Keywords: mean curvature flow; level set equation; numerical solution; semi-implicit scheme; discrete duality finite volume method; stability; convergence
@article{KYB_2013_49_6_a0,
author = {Handlovi\v{c}ov\'a, Angela and Kotorov\'a, Dana},
title = {Numerical analysis of a semi-implicit {DDFV} scheme for the regularized curvature driven level set equation in {2D}},
journal = {Kybernetika},
pages = {829--854},
year = {2013},
volume = {49},
number = {6},
mrnumber = {3182643},
zbl = {1290.65083},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a0/}
}
TY - JOUR AU - Handlovičová, Angela AU - Kotorová, Dana TI - Numerical analysis of a semi-implicit DDFV scheme for the regularized curvature driven level set equation in 2D JO - Kybernetika PY - 2013 SP - 829 EP - 854 VL - 49 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a0/ LA - en ID - KYB_2013_49_6_a0 ER -
Handlovičová, Angela; Kotorová, Dana. Numerical analysis of a semi-implicit DDFV scheme for the regularized curvature driven level set equation in 2D. Kybernetika, Tome 49 (2013) no. 6, pp. 829-854. http://geodesic.mathdoc.fr/item/KYB_2013_49_6_a0/
[1] Andreianov, B., Boyer, F., Hubert, F.: Discrete duality finite volume schemes for Leray-Lions type elliptic problems on general 2D meshes. Num. Methods PDE 23 (2007), 1, 145-195. Zbl 1111.65101 | DOI | MR | Zbl
[2] Barles, G., Souganidis, P. E.: Convergence of approximation schemes for fully nonlineae second order equations. Asymptotic Anal. 4 (1991), 3, 271-283. Zbl 0729.65077 | MR
[3] Corsaro, S., Mikula, K., Sarti, A., Sgallari, F.: Semi-implicit covolume method in 3D image segmentation. SIAM J. Sci. Comput Vol. 28 (2006), 6, 2248-2265. Zbl 1126.65088 | DOI | MR | Zbl
[4] Evans, L. C., Spruck, J.: Motion of level sets by mean curvature I. J. Differential Geometry 33 (1991), 635-681. Zbl 0726.53029 | MR | Zbl
[5] Eymard, R., Gallouët, T., Herbi, R.: The finite volume method. In: Handbook of Numerical Analysis, Ph. Ciarlet J.L. Lions eds 2000, pp. 715-1022. Zbl 0981.65095 | MR
[6] Eymard, R., Handlovičová, A., Mikula, K.: Study of a finite volume scheme for the regularized mean curvature flow level set equation. IMA Journal of Numerical Analysis 31 (2011), 3, 813-846. Zbl 1241.65072 | DOI | MR | Zbl
[7] Handlovičová, A., Mikula, K.: Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation. Appl. Math., Praha 53 (2008), 2, 105-129. Zbl 1199.35197 | DOI | MR | Zbl
[8] Handlovičová, A., Kotorová, D.: Stability of the semi-implicit discrete duality finite volume scheme for the curvature driven level set equation in 2D. Accepted in Tatra mountains mathematical publications.
[9] Handlovičová, A., Mikula, K., Sgallari, F.: Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution. Numer. Math.93 (2003), No. 4, 675-695. Zbl 1065.65105 | DOI | MR | Zbl
[10] Handlovičová, A., Mikula, K., Sgallari, F.: Variational numerical methods for solving nonlinear diffusion equations arising in image processing. J. Visual Communication and Image Representation 13 (2002), 217-237. | DOI
[11] Kotorová, D.: Discrete duality finite volume scheme for the curvature-driven level set equation in 3D. In: Advances in architectural, civil and environmental engineering: 22nd Annual PhD Student Conference. Bratislava 2012
[12] Kotorová, D.: Comparison of the 3D numerical scheme for solving curvature-driven level set equation based on discrete duality finite volumes. Accepted to proceedings of ODAM conference Olomouc 2013
[13] Mikula, K., Sarti, A., Sgallari, F.: Co-volume method for Riemannian mean curvature flow in subjective surfaces multiscale segmentation. Comput. Visual. Sci. 9 (2006), 1, 23-31. | DOI | MR
[14] Oberman, A. M.: A convergent monotone difference scheme for motion of level sets by mean curvature. Numer. Math. 99 (2004), 2, 365-379. Zbl 1070.65082 | DOI | MR | Zbl
[15] Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces. Springer-Verlag 2003. Zbl 1026.76001 | MR | Zbl
[16] Sethian, J. A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridge University Press, New York 1999. Zbl 0973.76003 | MR
[17] Walkington, N.: Algorithms for computing motion by mean curvature. SIAM J. Numer. Anal. 33 (1996), 6, 2215-2238. Zbl 0863.65061 | DOI | MR | Zbl