Keywords: biped robot; impulse dynamic systems; limit cycles; bifurcations; chaos
@article{KYB_2013_49_5_a8,
author = {Lin, Xiangze and Du, Haibo and Li, Shihua},
title = {Parameter influence on passive dynamic walking of a robot with flat feet},
journal = {Kybernetika},
pages = {792--808},
year = {2013},
volume = {49},
number = {5},
mrnumber = {3182641},
zbl = {1278.93008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_5_a8/}
}
Lin, Xiangze; Du, Haibo; Li, Shihua. Parameter influence on passive dynamic walking of a robot with flat feet. Kybernetika, Tome 49 (2013) no. 5, pp. 792-808. http://geodesic.mathdoc.fr/item/KYB_2013_49_5_a8/
[1] Borzova, E., Hurmuzlu, Y.: Passively walking five-link robot. Automatica 40 (2004), 4, 621-629. | DOI | MR | Zbl
[2] Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive dynamic walkers. Science 307 (2005), 1082-1085. | DOI
[3] Garcia, M., Chatterjee, A., Ruina, A., Coleman, M.: The simplest walking model: Stability, complexity, and scaling. J. Biomech. Engrg. 120 (1998), 2, 281-288. | DOI
[4] Goswami, A., Thuilot, B, Espiau, B.: Compass-like biped robot Part I: Stability and bifurcation of passive gaits. IINRIA Res. Rep. No. 2996, 1996.
[5] Goswami, A., Thuilot, B., Espiau, B.: A study of the passive gait of a compass-like biped robot: Symmetry and chaos. Internat. J. Robotics Res. 17 (1998), 12, 1282-1301. | DOI
[6] Grizzle, J. W., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Trans. Automat. Control 46 (2001), 1, 51-64. | DOI | MR | Zbl
[7] Hiskens, I.: Stability of hybrid system limit cycles: Application to the compass gait biped robot. In: Proc. IEEE Conference on Decision and Control, Orlando 2001.
[8] Holm, J. K.: Control of Passive Dynamic Robots Using Artificial Potential Energy Fields. M. S. Thesis, Univ. Illinois Urbana-Champaign 2005.
[9] Holm, J. K., Lee, D. J., Spong, M. W.: Time scaling for speed regulation in bipedal locomotion. In: Proc. IEEE Conference Robotics Automation, Rome 2007, pp. 3603-3608.
[10] Ikemata, Y., Sano, A., Fusimoto, H.: Analysis of stable limit cycle in passive walking. In: SICE Anual Conference, Fubukui 2003, pp. 117-122.
[11] Kim, J., Choi, C., Spong, M. W.: Passive dynamic walking with symmetric fixed flat feet. In: Proc. IEEE International Conference on Control and Automation, Guangzhou 2007, pp. 24-30.
[12] Kuo, A. D.: Stabilization of lateral motion in passive dynamic walking. Internat. J. Robotics Res. 18 (1999), 9, 917-930. | DOI
[13] Kurz, M. J., Judkins, T. N., Arellano, C., Scott-Pandorf, M.: A passive dynamic walking robot that has a deterministic nonlinear gait. J. Biomech. 41 (2008), 6, 1310-1316. | DOI
[14] Kurz, M. J., Stergiou, N.: An artificial neural network that utilizes hip joint actuations to control bifurcations and chaos in a passive dynamic bipedal walking model. Biolog. Cybernet. 93 (2005), 3, 213-221. | DOI | Zbl
[15] Kurz, M. J., Stergiou, N.: Hip actuations can be used to control bifurcations and chaos in a passive dynamic walking model. J. Biomech. Engrg. 129 (2007), 2, 216-222. | DOI
[16] Lin, X., Ding, Y., Shen, M., Li, S.: Feedback stabilization of unstable periodic orbits for chaotic passive compass-like biped robot. In: Proc. 7th World Congress on Intelligent Control and Automation, Chongqing 2008, pp. 7285-7290.
[17] McGeer, T.: Passive dynamic walking. Internat. J. Robotics Res. 9 (1990), 2, 62-68. | DOI
[18] McGeer, T.: Passive walking with knees. In: Proc. IEEE Conference on Robotics and Automation, Cincinnati 1990, pp. 1640-1645.
[19] Miller, D. J., Stergiou, N., Kurz, M. J.: An improved surrogate method for detecting the presence of chaos in gait. J. Biomech. 39 (2006), 15, 2873-2876. | DOI
[20] Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge 1993. | MR | Zbl
[21] Parker, T. S., Chua, L. O.: Practical Numerical Algorithms for Chaotic Systems. Springer-Verlag, New York 1989. | MR | Zbl
[22] Seydel, R.: Practical Bifurcation and Stability Analysis. Second edition. Springer-Verlag, New York 1994. | MR
[23] Spong, M. W.: Passivity based control of the compass gait biped. In: Proc. World Congress of IFAC, Beijing 1999, pp. 19-24.
[24] Spong, M. W., Bhatia, G.: Further results on control of the compass gait biped. In: Proc. IEEE International Conference on Intelligent Robots and Systems, Las Vegas 2003, pp. 1933-1938.
[25] Spong, M. W., Bullo, F.: Controlled symmetries and passive walking. IEEE Trans. Automat. Control 50 (2005), 7, 1025-1031. | DOI | MR
[26] Stergiou, N., Buzzi, U. H., Kurz, M. J., Heidel, J.: Nonlinear tools in human movement. In: Innovative Analysis of Human Movement, Human Kinetics (N. Stergiou, ed.), Champaign 2004.
[27] Wisse, M., Schwab, A. L., Helm, F. C. T. Van der: Passive dynamic walking model with upper body. Robotica 22 (2004), 6, 681-688. | DOI