Keywords: neutral stochastic time-delay systems; delay decomposition approach; exponential stability; linear matrix inequality (LMI)
@article{KYB_2013_49_5_a7,
author = {Chen, Huabin and Hu, Peng},
title = {Stability analysis for neutral stochastic systems with mixed delays},
journal = {Kybernetika},
pages = {780--791},
year = {2013},
volume = {49},
number = {5},
mrnumber = {3182640},
zbl = {1278.93189},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_5_a7/}
}
Chen, Huabin; Hu, Peng. Stability analysis for neutral stochastic systems with mixed delays. Kybernetika, Tome 49 (2013) no. 5, pp. 780-791. http://geodesic.mathdoc.fr/item/KYB_2013_49_5_a7/
[1] Boyd, B., Ghaoui, L. E., Feron, E., Balakrishnan, V. B.: Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia 1994. | MR
[2] Chen, G., Shen, Y.: Robust $H_\infty$ filter design for neutral stochastic uncertain systems with time-varying delay. J. Math. Anal. Appl. 353 (2009), 1, 196-204. | DOI | MR | Zbl
[3] Chen, W.-H., Zheng, W.-X., Shen, Y.: Delay-dependent stochastic stability and $H_\infty$-control of uncertain neutral stochastic systems with time delay. IEEE Trans. Automat. Control 54 (2009), 7, 1660-1667. | DOI | MR
[4] Chen, Y., Zheng, W.-X., Xue, A.: A new result on stability analysis for stochastic neutral systems. Automatica 46 (2010), 12, 2100-2104. | DOI | MR | Zbl
[5] Du, B., Lam, J., Shu, Z., Wang, Z.: A delay-partitioning projection approach to stability analysis of continuous systems with multiple delay components. IET-Control Theory Appl. 3 (2009), 4, 383-390. | MR
[6] Fridman, E.: New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Syst. Control Lett. 43 (2001), 4, 309-319. | DOI | MR | Zbl
[7] Gouaisbaut, F., Peaucelle, D.: Delay-dependent stability analysis of linear time delay systems. In: Proc. IFAC Workshop Time Delay Syst. 2006, pp. 1-12.
[8] Gao, H., Fei, Z., Lam, J., Du, B.: Further results on exponential estimates of markovian jump systems with mode-dependent time-varying delays. IEEE Trans. Automaat. Control 56 (2011), 1, 223-229. | DOI | MR
[9] Gao, H., Chen, T.: New results on stability of discrete-time systems with time-varying state delay. IEEE Trans. Automat. Control 52 (2007), 2, 328-334. | DOI | MR
[10] Gu, K., Kharitonov, V., Chen, J.: Stability of Time-delay Systems. Birkhauser, Boston 2003. | Zbl
[11] Huang, L., Mao, X.: Delay-dependent exponential stability of neutral stochastic delay systems. IEEE Trans. Automat. Control 54 (2009), 1, 147-152. | DOI | MR
[12] Han, Q.-L.: A discrete delay decomposition approach stability of linear retarded and neutral systems. Automatica 45 (2009), 2, 517-524. | DOI | MR
[13] He, Y., Wu, M., She, J.-H., Liu, G.-P.: Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. Syst. Control Lett. 51 (2004), 1, 57-65. | DOI | MR | Zbl
[14] Jerzy, K.: Stochastic controllability and minimum energy control of systems with multiple delays in control. Appl. Math. Comput. 206 (2008), 2, 704-715. | DOI | MR | Zbl
[15] Jerzy, K.: Stochastic controllability of linear systems with state delays. Internat. J. Appl. Math. Comput. Sci. 17 (2007), 1, 5-13. | MR | Zbl
[16] Li, X.-G., Zhu, X.-J., Cela, A., Reama, A.: Stability analysis of neutral systems with mixed delays. Automatica 44 (2008), 8, 2968-2972. | MR | Zbl
[17] Li, H. F., Gu, K. Q.: Discretized Lyapunov-Krasovskii functional for coupled differential-difference equations with multiple delay channels. Automatica 46 (2010), 5, 902-909. | DOI | MR | Zbl
[18] Mao, X.: Stochastic Differential Equations and Their Applications. Horwood Publication, Chichester 1997. | MR | Zbl
[19] Wu, L. G., Feng, Z. G., Zheng, W.-X.: Exponential stability analysis for delayed neural networks with switching parameters: average dwell time approach. IEEE Trans. Neural Netw. 21 (2010), 9, 1396-1407. | DOI
[20] Wang, Y., Wang, Z., Liang, J.: On robust stability of stochastic genetic regulatory networks with time delays: A delay fractioning approach. IEEE Trans. Syst. Man Cybernet. B 40 (2010), 3, pp. 729-740. | DOI
[21] Xu, S., Shi, P., Chu, Y., Zou, Y.: Robust stochastic stabilization and $H_\infty$ control of uncertain neutral stochastic time-delay systems. J. Math. Anal. Appl. 314 (2006), 1, 1-16. | DOI | MR | Zbl
[22] Zhu, S., Li, Z., Zhang, C.: Delay decomposition approach to delay-dependent stability for singular time-delay systems. IET-Control Theory Appl. 4 (2010), 11, 2613-2620. | MR
[23] Zhou, S., Zhou, L.: Improved exponential stability criteria and stabilization of T-S model-based neutral systems. IET-Control Theory Appl. 4 (2010), 12, 2993-3002. | MR