Verification of functional a posteriori error estimates for obstacle problem in 1D
Kybernetika, Tome 49 (2013) no. 5, pp. 738-754 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We verify functional a posteriori error estimate for obstacle problem proposed by Repin. Simplification into 1D allows for the construction of a nonlinear benchmark for which an exact solution of the obstacle problem can be derived. Quality of a numerical approximation obtained by the finite element method is compared with the exact solution and the error of approximation is bounded from above by a majorant error estimate. The sharpness of the majorant error estimate is discussed.
We verify functional a posteriori error estimate for obstacle problem proposed by Repin. Simplification into 1D allows for the construction of a nonlinear benchmark for which an exact solution of the obstacle problem can be derived. Quality of a numerical approximation obtained by the finite element method is compared with the exact solution and the error of approximation is bounded from above by a majorant error estimate. The sharpness of the majorant error estimate is discussed.
Classification : 34B15, 49J40, 49M25, 65K15, 65L60, 74K05, 74M15, 74S05
Keywords: obstacle problem; a posteriori error estimate; functional majorant; finite element method; variational inequalities; Uzawa algorithm
@article{KYB_2013_49_5_a4,
     author = {Harasim, Petr and Valdman, Jan},
     title = {Verification of functional a posteriori error estimates for obstacle problem in {1D}},
     journal = {Kybernetika},
     pages = {738--754},
     year = {2013},
     volume = {49},
     number = {5},
     mrnumber = {3182637},
     zbl = {1278.49035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_5_a4/}
}
TY  - JOUR
AU  - Harasim, Petr
AU  - Valdman, Jan
TI  - Verification of functional a posteriori error estimates for obstacle problem in 1D
JO  - Kybernetika
PY  - 2013
SP  - 738
EP  - 754
VL  - 49
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2013_49_5_a4/
LA  - en
ID  - KYB_2013_49_5_a4
ER  - 
%0 Journal Article
%A Harasim, Petr
%A Valdman, Jan
%T Verification of functional a posteriori error estimates for obstacle problem in 1D
%J Kybernetika
%D 2013
%P 738-754
%V 49
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2013_49_5_a4/
%G en
%F KYB_2013_49_5_a4
Harasim, Petr; Valdman, Jan. Verification of functional a posteriori error estimates for obstacle problem in 1D. Kybernetika, Tome 49 (2013) no. 5, pp. 738-754. http://geodesic.mathdoc.fr/item/KYB_2013_49_5_a4/

[1] Ainsworth, M., Oden, J. T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley and Sons, New York 2000. | MR | Zbl

[2] Babuška, I., Strouboulis, T.: The Finite Element Method and its Reliability. Oxford University Press, New York 2001. | MR

[3] Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Birkhäuser, Berlin 2003. | MR | Zbl

[4] Braess, D., Hoppe, R. H. W., Schöberl, J.: A posteriori estimators for obstacle problems by the hypercircle method. Comp. Visual. Sci. 11 (2008), 351-362. | DOI | MR

[5] Brezi, F., Hager, W. W., Raviart, P. A.: Error estimates for the finite element solution of variational inequalities I. Numer. Math. 28 (1977), 431-443. | DOI | MR

[6] Buss, H., Repin, S.: A posteriori error estimates for boundary value problems with obstacles. In: Proc. 3rd European Conference on Numerical Mathematics and Advanced Applications, Jÿvaskylä 1999, World Scientific 2000, pp. 162-170. | MR | Zbl

[7] Carstensen, C., Merdon, C.: A posteriori error estimator completition for conforming obstacle problems. Numer. Methods Partial Differential Equations 29 (2013), 667-�692. | DOI | MR

[8] Dostál, Z.: Optimal Quadratic Programming Algorithms. Springer 2009. | MR

[9] Falk, R. S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28 (1974), 963-971. | DOI | MR | Zbl

[10] Fuchs, M., Repin, S.: A Posteriori Error Estimates for the Approximations of the Stresses in the Hencky Plasticity Problem. Numer. Funct. Anal. Optim. 32 (2011), 610-640. | DOI | MR

[11] Glowinski, R., Lions, J. L., Trémolieres, R.: Numerical Analysis of Variational Inequalities. North-Holland 1981. | MR | Zbl

[12] Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of Variational Inequalities in Mechanics. Applied Mathematical Sciences 66, Springer-Verlag, New York 1988. | MR | Zbl

[13] Kikuchi, N., Oden, J. T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM 1995. | MR | Zbl

[14] Kraus, J., Tomar, S.: Algebraic multilevel iteration method for lowest-order Raviart-Thomas space and applications. Internat. J. Numer. Meth. Engrg. 86 (2011), 1175-1196. | DOI | MR | Zbl

[15] Lions, J. L., Stampacchia, G.: Variational inequalities. Comm. Pure Appl. Math. XX(3) (1967), 493-519. | DOI | MR | Zbl

[16] Neittaanmäki, P., Repin, S.: Reliable Methods for Computer Simulation (Error Control and a Posteriori Estimates). Elsevier 2004. | MR | Zbl

[17] Repin, S.: A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comput. 69(230) (2000), 481-500. | DOI | MR | Zbl

[18] Repin, S.: A posteriori error estimation for nonlinear variational problems by duality theory. Zapiski Nauchn. Semin. POMI 243 (1997), 201-214. | MR | Zbl

[19] Repin, S.: Estimates of deviations from exact solutions of elliptic variational inequalities. Zapiski Nauchn. Semin. POMI 271 (2000), 188-203. | MR | Zbl

[20] Repin, S.: A Posteriori Estimates for Partial Differential Equations. Walter de Gruyter, Berlin 2008. | MR | Zbl

[21] Repin, S., Valdman, J.: Functional a posteriori error estimates for problems with nonlinear boundary conditions. J. Numer. Math. 16 (2008), 1, 51-81. | DOI | MR | Zbl

[22] Repin, S., Valdman, J.: Functional a posteriori error estimates for incremental models in elasto-plasticity. Cent. Eur. J. Math. 7 (2009), 3, 506-519. | DOI | MR | Zbl

[23] Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. SIAM 2011. | MR | Zbl

[24] Valdman, J.: Minimization of functional majorant in a posteriori error analysis based on $H(div)$ multigrid-preconditioned CG method. Advances in Numerical Analysis (2009). | MR | Zbl

[25] Zou, Q., Veeser, A., Kornhuber, R., Gräser, C.: Hierarchical error estimates for the energy functional in obstacle problems. Numer. Math. 117 (2012), 4, 653-677. | DOI | MR | Zbl