Keywords: Markov decision process; total discounted cost; total discounted reward; increasing optimal policy; decreasing optimal policy; policy iteration algorithm
@article{KYB_2013_49_5_a2,
author = {Flores-Hern\'andez, Rosa Mar{\'\i}a},
title = {Monotone optimal policies in discounted {Markov} decision processes with transition probabilities independent of the current state: existence and approximation},
journal = {Kybernetika},
pages = {705--719},
year = {2013},
volume = {49},
number = {5},
mrnumber = {3182635},
zbl = {1278.90425},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_5_a2/}
}
TY - JOUR AU - Flores-Hernández, Rosa María TI - Monotone optimal policies in discounted Markov decision processes with transition probabilities independent of the current state: existence and approximation JO - Kybernetika PY - 2013 SP - 705 EP - 719 VL - 49 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_2013_49_5_a2/ LA - en ID - KYB_2013_49_5_a2 ER -
%0 Journal Article %A Flores-Hernández, Rosa María %T Monotone optimal policies in discounted Markov decision processes with transition probabilities independent of the current state: existence and approximation %J Kybernetika %D 2013 %P 705-719 %V 49 %N 5 %U http://geodesic.mathdoc.fr/item/KYB_2013_49_5_a2/ %G en %F KYB_2013_49_5_a2
Flores-Hernández, Rosa María. Monotone optimal policies in discounted Markov decision processes with transition probabilities independent of the current state: existence and approximation. Kybernetika, Tome 49 (2013) no. 5, pp. 705-719. http://geodesic.mathdoc.fr/item/KYB_2013_49_5_a2/
[1] Assaf, D.: Invariant problems in discounted dynamic programming. Adv. in Appl. Probab. 10 (1978), 472-490. | DOI | MR | Zbl
[2] Bäuerle, N., Rieder, U.: Markov Decision Processes with Applications to Finance. Springer-Verlag, Berlin - Heidelberg 2011. | MR | Zbl
[3] Bertsekas, D. P.: Dynamic Programming: Deterministic and Stochastic Models. Prentice Hall, New Jersey 1987. | MR | Zbl
[4] Cruz-Suárez, D., Montes-de-Oca, R., Salem-Silva, F.: Conditions for the uniqueness of optimal policies of discounted Markov decision processes. Math. Methods Oper. Res. 60 (2004), 415-436. | DOI | MR | Zbl
[5] Dragut, A.: Structured optimal policies for Markov decision processes: lattice programming techniques. In: Wiley Encyclopedia of Operations Research and Management Science (J. J. Cochran, ed.), John Wiley and Sons, 2010, pp. 1-25.
[6] Duffie, D.: Security Markets. Academic Press, San Diego 1988. | MR | Zbl
[7] Flores-Hernández, R. M., Montes-de-Oca, R.: Monotonicity of minimizers in optimization problems with applications to Markov control processes. Kybernetika 43 (2007), 347-368. | MR | Zbl
[8] Hernández-Lerma, O., Lasserre, J. B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York 1996. | MR | Zbl
[9] Heyman, D. P., Sobel, M. J.: Stochastic Models in Operations Research, Vol. II. Stochastic Optimization. McGraw-Hill, New York 1984. | Zbl
[10] Jaśkiewicz, A.: A note on risk-sensitive control of invariant models. Syst. Control Lett. 56 (2007), 663-668. | DOI | MR | Zbl
[11] Jaśkiewicz, A., Nowak, A. S.: Discounted dynamic programming with unbounded returns: application to economic models. J. Math. Anal. Appl. 378 (2011), 450-462. | DOI | MR | Zbl
[12] Mendelssohn, R., Sobel, M. J.: Capital accumulation and the optimization of renewable resource models. J. Econom. Theory 23 (1980), 243-260. | DOI | Zbl
[13] Puterman, M. L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley and Sons, New York 1994. | MR | Zbl
[14] Topkis, D. M.: Supermodularity and Complementarity. Princeton University Press, Princeton, New Jersey 1998. | MR