Sample $d$-copula of order $m$
Kybernetika, Tome 49 (2013) no. 5, pp. 663-691 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we analyze the construction of $d$-copulas including the ideas of Cuculescu and Theodorescu [5], Fredricks et al. [15], Mikusiński and Taylor [25] and Trutschnig and Fernández-Sánchez [33]. Some of these methods use iterative procedures to construct copulas with fractal supports. The main part of this paper is given in Section 3, where we introduce the sample $d$-copula of order $m$ with $m≥2$, the central idea is to use the above methodologies to construct a new copula based on a sample. The greatest advantage of the sample $d$-copula is the fact that it is already an approximating $d$-copula and that it is easily obtained. We will see that these new copulas provide a nice way to study multivariate data with an approximating copula which is simpler than the empirical multivariate copula, and that the empirical copula is the restriction to a grid of a sample $d$-copula of order $n$. These sample $d$-copulas can be used to make statistical inference about the distribution of the data, as shown in Section 3.
In this paper we analyze the construction of $d$-copulas including the ideas of Cuculescu and Theodorescu [5], Fredricks et al. [15], Mikusiński and Taylor [25] and Trutschnig and Fernández-Sánchez [33]. Some of these methods use iterative procedures to construct copulas with fractal supports. The main part of this paper is given in Section 3, where we introduce the sample $d$-copula of order $m$ with $m≥2$, the central idea is to use the above methodologies to construct a new copula based on a sample. The greatest advantage of the sample $d$-copula is the fact that it is already an approximating $d$-copula and that it is easily obtained. We will see that these new copulas provide a nice way to study multivariate data with an approximating copula which is simpler than the empirical multivariate copula, and that the empirical copula is the restriction to a grid of a sample $d$-copula of order $n$. These sample $d$-copulas can be used to make statistical inference about the distribution of the data, as shown in Section 3.
Classification : 60A10, 60E05, 62E10, 62F05
Keywords: $d$-copulas; fractal copulas; sample $d$-copulas of order $m$
@article{KYB_2013_49_5_a0,
     author = {Gonz\'alez-Barrios, Jos\'e M. and Hern\'andez-Cedillo, Mar{\'\i}a M.},
     title = {Sample $d$-copula of order $m$},
     journal = {Kybernetika},
     pages = {663--691},
     year = {2013},
     volume = {49},
     number = {5},
     mrnumber = {3182633},
     zbl = {06239460},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_5_a0/}
}
TY  - JOUR
AU  - González-Barrios, José M.
AU  - Hernández-Cedillo, María M.
TI  - Sample $d$-copula of order $m$
JO  - Kybernetika
PY  - 2013
SP  - 663
EP  - 691
VL  - 49
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2013_49_5_a0/
LA  - en
ID  - KYB_2013_49_5_a0
ER  - 
%0 Journal Article
%A González-Barrios, José M.
%A Hernández-Cedillo, María M.
%T Sample $d$-copula of order $m$
%J Kybernetika
%D 2013
%P 663-691
%V 49
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2013_49_5_a0/
%G en
%F KYB_2013_49_5_a0
González-Barrios, José M.; Hernández-Cedillo, María M. Sample $d$-copula of order $m$. Kybernetika, Tome 49 (2013) no. 5, pp. 663-691. http://geodesic.mathdoc.fr/item/KYB_2013_49_5_a0/

[1] Alsina, C., Frank, M. J., Schweizer, B.: Associative Functions: Triangular Norms And Copulas. World Scientific Publishing Co., Singapore 2006. | MR | Zbl

[2] Berger, J. O., Bernardo, J. M.: Ordered group reference priors with application to the multinomial problem. Biometrika 79 (1992), 1, 25-37. | DOI | MR | Zbl

[3] Bouyé, E., Durrleman, V., Nikeghbali, A., Riboulet, G., Roncalli, T.: Copulas for Finance. A Reading Quide and Some Applications. Groupe de recherche opérationnelle, Crédit Lyonnais, Paris 2000.

[4] Cressie, N., Read, T. R. C.: Multinomial goodness-of-fit tests. J. Roy. Statist. Soc., Ser. B 46 (1984), 3, 440-464. | MR | Zbl

[5] Cuculescu, I., Theodorescu, R.: Copulas: Diagonals, tracks. Rev. Roumaine Math. Pures Appl. 46 (2001), 6, 731-742. | MR | Zbl

[6] Amo, E. de, Carrillo, M. Díaz, Fernández-Sánchez, J.: Measure-preserving functions and the independence copula. Mediterr. J. Math. 8 (2011), 431-450. | DOI | MR

[7] Amo, E. de, Carrillo, M. Díaz, Fernández-Sánchez, J.: Copulas and associated fractal sets. J. Math. Anal. Appl. 386 (2012), 528-541. | DOI | MR

[8] Deheuvels, P.: La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d'indépendance. Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 5, 274-292. | MR | Zbl

[9] Durante, F., Quesada-Molina, J. J., Úbeda-Flores, M.: On a family of multivariate copulas for aggregation processes. Inform. Sci. 177 (2007), 5715-5724. | DOI | MR | Zbl

[10] Durante, F., Fernández-Sánchez, J.: Multivariate shuffles and approximation copulas. Statist. Probab. Lett. 80 (2010), 1827-1834. | DOI | MR

[11] Durante, F., Fernández-Sánchez, J., Sempi, C.: Sklar's theorem obtained via regularization techniques. Nonlinear Anal. 75 (2012), 2, 769-774. | DOI | MR | Zbl

[12] Durante, F., Fernández-Sánchez, J., Sempi, C.: A note on the notion of singular copula. Fuzzy Sets and Systems 211 (2013), 120-122. | DOI | MR

[13] Fermanian, J. D., Radulović, D., Wegcamp, M.: Weak convergence of empirical copula. Bernoulli 10 (2004), 5, 847-860. | DOI | MR

[14] Fernández-Sánchez, J., Nelsen, R. B., Úbeda-Flores, M.: Multivariate copulas, quasi-copulas and lattices. Statist. Probab. Lett. 81 (2011), 1365-1369. | DOI | MR | Zbl

[15] Fredricks, G. A., Nelsen, R. B., Rodríguez-Lallena, J. A.: Copulas with fractal supports. Insurance Math. Econom. 37 (2005), 42-48. | DOI | MR | Zbl

[16] Genest, C., Rémillard, B., Beaudoin, D.: Goodness-of-fit tests for copulas: A review and a power study. Insurance Math. Econom. 44 (2009), 199-213. | DOI | MR | Zbl

[17] Hernández-Cedillo, M. M.: Topics on Multivariate Copulas and Applications. Ph.D. Thesis, Universidad Nacional Autónoma de México 2013, preprint.

[18] Hofert, M., Kojadinovic, I., Maechler, M., Yan, J.: copula: Multivariate Dependence with Copulas. R package version 0.999-5. http://CRAN.R-project.org/package=copula, 2012.

[19] Hogg, R. H., Craig, A. T.: Introduction to Mathematical Statistics. Fourth edition. Collier Macmillan International Eds., New York-London 1978. | MR

[20] Jaworski, P.: On copulas and their diagonals. Inform. Sci. 179 (2009), 2863-2871. | DOI | MR | Zbl

[21] Mahmoud, H. M.: Polya urn models. Texts Statist. Sci. Ser., Chapman and Hall/CRC, New York 2008. | DOI | MR | Zbl

[22] Mai, J. F., Scherer, M.: Simulating Copulas: Stochastic Models, Sampling Algorithms and Applications. Series in Quantitative Finance 4, Imperial College Press, London 2012. | MR

[23] Marcus, M.: Some properties and applications of double stochastic matrices. Amer. Math. Monthly 67 (1960), 215-221. | DOI | MR

[24] Mesiar, R., Sempi, C.: Ordinal sums and idempotent of copulas. Aequat. Math. 79, (2010), 1-2, 39-52. | DOI | MR

[25] Mikusiński, P., Taylor, M. D.: Some approximations of $n$-copulas. Metrika 72 (2010), 385-414. | DOI | MR | Zbl

[26] Nelsen, R. B.: An Introduction to Copulas. Lecture Notes in Statist. 139, second edition, Springer, New York 2006. | MR | Zbl

[27] Read, T. R. C., Cressie, N.: Goodness-of-fit Statistics for Discrete Multivariate Data. Springer Series in Statist., Springer, New York 1988. | MR | Zbl

[28] Rodríguez-Lallena, J. A., Úbeda-Flores, M.: Distribution functions of multivariate copulas. Statist. Probab. Lett. 64 (2003), 41-50. | DOI | MR | Zbl

[29] Rychlik, T.: Distributions and expectations of order statistics for possible dependent random variables. J. Multivariate Anal. 48 (1994), 31-42. | DOI | MR

[30] Sherman, S.: Doubly stochastic matrices and complex vector spaces. Amer. J. Math. 77 (1955), 245-246. | DOI | MR | Zbl

[31] Siburg, K. F., Stoimenov, P. A.: Gluing copulas. Comm. Statist. Theory and Methods. 37 (2008), 3124-3134. | DOI | MR

[32] Sklar, A.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231. | MR

[33] Trutschnig, W., Fernández-Sánchez, J.: Idempotent and multivariate copulas with fractal support. J. Statist. Plan. Infer. 142 (2012), 3086-3096. | DOI | MR

[34] Trutschnig, W.: Idempotent copulas with fractal support. Adv. Comp. Intel. 298, (2012), 3, 161-170. | Zbl