Keywords: max-plus algebra; eigenvalue; sub-partition of an integer; Toeplitz matrix
@article{KYB_2013_49_4_a8,
author = {Szab\'o, Peter},
title = {An iterative algorithm for computing the cycle mean of a {Toeplitz} matrix in special form},
journal = {Kybernetika},
pages = {636--643},
year = {2013},
volume = {49},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_4_a8/}
}
Szabó, Peter. An iterative algorithm for computing the cycle mean of a Toeplitz matrix in special form. Kybernetika, Tome 49 (2013) no. 4, pp. 636-643. http://geodesic.mathdoc.fr/item/KYB_2013_49_4_a8/
[1] Butkovič, P.: Max-linear Systems: Theory and Algorithms. Springer-Verlag, London 2010. | MR | Zbl
[2] Cuninghame-Green, R. A.: Minimax Algebra. Springer-Verlag, Berlin 1979. | MR | Zbl
[3] Heidergott, B., Olsder, G. J., Woude, J. van der: Max Plus at Work. Modeling and Analysis of Synchronized Systems. Princeton University Press 2004.
[4] Heinig, G.: Not every matrix is similar to a Toeplitz matrix. Linear Algebra Appl. 332-334 (2001), 519-531. | MR | Zbl
[5] Karp, R. M.: A characterization of the minimum cycle mean in a digraph. Discrete Math. 23 (1978), 309-311. | MR | Zbl
[6] Landau, H. J.: Tile inverse eigenvalue problem for real symmetric Toeplitz matrices. J. Amer. Math. Soc. 7 (1994), 749-767. | DOI | MR
[7] Plavka, J.: Eigenproblem for monotone and Toeplitz matrices in a max-algebra. Optimization 53 (2004), 95-101. | DOI | MR | Zbl
[8] Szabó, P.: A short note on the weighted sub-partition mean of integers. Oper. Res. Lett. 37(5) (2009), 356-358. | DOI | MR | Zbl
[9] Zimmermann, K.: Extremální algebra (in Czech). Ekonomický ústav SAV, Praha 1976.