Keywords: time-delay systems; optimal control; stability
@article{KYB_2013_49_4_a4,
author = {Carravetta, Francesco and Palumbo, Pasquale and Pepe, Pierdomenico},
title = {Memoryless solution to the optimal control problem for linear systems with delayed input},
journal = {Kybernetika},
pages = {568--589},
year = {2013},
volume = {49},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_4_a4/}
}
TY - JOUR AU - Carravetta, Francesco AU - Palumbo, Pasquale AU - Pepe, Pierdomenico TI - Memoryless solution to the optimal control problem for linear systems with delayed input JO - Kybernetika PY - 2013 SP - 568 EP - 589 VL - 49 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2013_49_4_a4/ LA - en ID - KYB_2013_49_4_a4 ER -
%0 Journal Article %A Carravetta, Francesco %A Palumbo, Pasquale %A Pepe, Pierdomenico %T Memoryless solution to the optimal control problem for linear systems with delayed input %J Kybernetika %D 2013 %P 568-589 %V 49 %N 4 %U http://geodesic.mathdoc.fr/item/KYB_2013_49_4_a4/ %G en %F KYB_2013_49_4_a4
Carravetta, Francesco; Palumbo, Pasquale; Pepe, Pierdomenico. Memoryless solution to the optimal control problem for linear systems with delayed input. Kybernetika, Tome 49 (2013) no. 4, pp. 568-589. http://geodesic.mathdoc.fr/item/KYB_2013_49_4_a4/
[1] Basin, M.: New Trends in optimal Filtering and Control for Polynomial and Time-Delay Systems. Lecture Notes in Control and Inform. Sci. 380, Springer-Verlag, Berlin - Heidelberg 2008. | MR | Zbl
[2] Basin, M., Martanez-Zniga, R.: Optimal linear filtering over observations with multiple delays. Internat. J. Robust Nonlinear Control 14 (2004), 8, 685-696. | DOI | MR
[3] Basin, M., Rodriguez-Gonzalez, J., Fridman, L., Acosta, P.: Integral sliding mode design for robust filtering and control of linear stochastic time-delay systems. Internat. J. Robust Nonlinear Control 15 (2005), 9, 407-421. | DOI | MR | Zbl
[4] Basin, M., Rodriguez-Gonzalez, J., Martinez-Zuniga, R.: Optimal control for linear systems with time-delay in control input. J. Franklin Inst. - Engrg. and Appl. Math. 341 (2004), 3, 267-278. | DOI | MR | Zbl
[5] Boukas, E.-K., Liu, Z.-K.: Deterministic and Stochastic Time Delay Systems. Birkhauser, Boston 2002. | Zbl
[6] Carravetta, F., Palumbo, P., Pepe, P.: Quadratic optimal control of linear systems with time-varying input delay. In: Proc. 49th IEEE Conf. on Dec. and Control (CDC), Atlanta 2010, pp. 4996-5000.
[7] Carravetta, F., Palumbo, P., Pepe, P.: Memoryless solution to the infinite horizon optimal control of LTI systems with delayed input. In: Proc. IASTED Asian Conference on Modelling, Identification and Control (AsiaMIC), Phuket 2012.
[8] Chang, Y. P., Tsai, J. S. H., Shieh, L. S.: Optimal digital redesign of hybrid cascaded input-delay systems under state and control constraints. IEEE Trans. Circuits and Systems I - Fundamental Theory and Applications 49 (2002), 9, 1382-1392.
[9] Chopra, N., Berestesky, P., Spong, M. W.: Bilateral teleoperation over unreliable communication networks. IEEE Trans. Control Systems Technol. 16 (2008), 304-313. | DOI
[10] Chyung, D. H.: Discrete systems with delays in control. IEEE Trans. Automat. Control 14 (1969), 196-197. | DOI | MR
[11] Delfour, M. C.: The linear quadratic optimal control problem with delays in state and control variables: A state space approach. SIAM J. Control Optim. 24 (1986), 835-883. | DOI | MR | Zbl
[12] Fridman, E.: New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Systems Control Lett. 43 (2001), 4, 309-319. | DOI | MR | Zbl
[13] Fridman, E.: Stability of linear descriptor systems with delay: a Lyapunov-based approach. J. Math. Anal. Appl. 273 (2002), 24-44. | DOI | MR | Zbl
[14] Gu, K., Kharitonov, V. L., Chen, J.: Stability of Time Delay Systems. Birkhauser, Boston 2003. | Zbl
[15] Ichikawa, A.: Quadratic control of evolution equations with delays in control. SIAM J. Control Optim. 5 (1982), 645-668. | DOI | MR | Zbl
[16] Germani, A., Manes, C., Pepe, P.: Implementation of an LQG control scheme for linear systems with delayed feedback action. In: Proc. 3rd European Control Conference (ECC), Vol. 4, Rome 1995, pp. 2886-2891.
[17] Germani, A., Manes, C., Pepe, P.: A twofold spline approximation for finite horizon LQG control of hereditary systems. SIAM J. Control Optim. 39 (2000), 4, 1233-1295. | DOI | MR | Zbl
[18] Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Series Math. Sci. Engrg. 191, Academic Press, Boston 1993. | MR | Zbl
[19] Kojima, A., Ishijima, S.: Formulas on preview and delayed $H_\infty$ control. In: Proc. 42nd IEEE Conf. on Dec. and Control (CDC), Mauii 2003, pp. 6532-6538.
[20] Krstic, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Birkauser, Boston 2009. | MR | Zbl
[21] Ma, Y. C., Huang, L. F., Zhang, Q. L.: Robust guaranteed cost $H\sb \infty$ control for an uncertain time-varying delay system. (Chinese) Acta Phys. Sinica 56 (2007), 7, 3744-3752. | MR
[22] Milman, M. H.: Approximating the linear quadratic optimal control law for hereditary systems with delays in the control. SIAM J. Control Optim. 2 (1988), 291-320. | DOI | MR | Zbl
[23] Moelja, A. A., Meinsma, G.: $H\sb 2$-optimal control of systems with multiple i/o delays: time domain approach. Automatica 41 (2005), 7, 1229-1238. | DOI | MR
[24] Mondié, S., Michiels, W.: Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Trans. Automat. Control 48, 12, 2207-2212. | DOI | MR
[25] Niculescu, S.-I.: Delay Effects on Stability, A Robust Control Approach. LNCIS 269, Springer-Verlag, London Limeted 2001. | MR | Zbl
[26] Kuang, Y.: Delay Differential Equations With Applications in Population Dynamics. Math. Sci. Engrg. 191, Academic Press Inc., San Diego 1993. | MR | Zbl
[27] Pandolfi, P.: The standard regulator problem for systems with input delays. An approach through singular control theory. Appl. Math. Optim. 31 (1995), 119-136. | DOI | MR | Zbl
[28] Pepe, P., Jiang, Z.-P.: A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems. Syst. Control Lett. 55 (2006), 1006-1014. | DOI | MR | Zbl
[29] Pindyck, R. S.: The discrete-time tracking problem with a time delay in the control. IEEE Trans. Automat. Control 17 (1972), 397-398. | DOI | MR
[30] Polushin, I., Marquez, H. J., Tayebi, A., Liu, P. X.: A multichannel IOS small gain theorm for systems with multiple time-varying communication delays. IEEE Trans. Automat. Control 54 (2009), 404-409. | DOI | MR
[31] Tadmor, G.: The standard $H_{\infty}$ problem in systems with a single input delay. IEEE Trans. Automat. Control 45 (2000), 382-397. | DOI | MR | Zbl
[32] Wang, P. K. C.: Optimal control for discrete-time systems with time-lag controls. IEEE Trans. Automat. Control 19 (1975), 425-426. | DOI
[33] Zhang, H., Duan, G., Xie, L.: Linear quadratic regulation for linear time-varying systems with multiple input delays. Automatica 42 (2006), 9, 1465-1476. | DOI | MR | Zbl
[34] Zhou, B., Lin, Z., Duan, G.-R.: Truncated predictor feedback for linear systems with long time-varying input delays. Automatica 48 (2012), 10, 2387-2389. | DOI | MR