Memoryless solution to the optimal control problem for linear systems with delayed input
Kybernetika, Tome 49 (2013) no. 4, pp. 568-589 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This note investigates the optimal control problem for a time-invariant linear systems with an arbitrary constant time-delay in in the input channel. A state feedback is provided for the infinite horizon case with a quadratic cost function. The solution is memoryless, except at an initial time interval of measure equal to the time-delay. If the initial input is set equal to zero, then the optimal feedback control law is memoryless from the beginning. Stability results are established for the closed loop system, in the scalar case.
This note investigates the optimal control problem for a time-invariant linear systems with an arbitrary constant time-delay in in the input channel. A state feedback is provided for the infinite horizon case with a quadratic cost function. The solution is memoryless, except at an initial time interval of measure equal to the time-delay. If the initial input is set equal to zero, then the optimal feedback control law is memoryless from the beginning. Stability results are established for the closed loop system, in the scalar case.
Classification : 62A10, 93E12
Keywords: time-delay systems; optimal control; stability
@article{KYB_2013_49_4_a4,
     author = {Carravetta, Francesco and Palumbo, Pasquale and Pepe, Pierdomenico},
     title = {Memoryless solution to the optimal control problem for linear systems with delayed input},
     journal = {Kybernetika},
     pages = {568--589},
     year = {2013},
     volume = {49},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_4_a4/}
}
TY  - JOUR
AU  - Carravetta, Francesco
AU  - Palumbo, Pasquale
AU  - Pepe, Pierdomenico
TI  - Memoryless solution to the optimal control problem for linear systems with delayed input
JO  - Kybernetika
PY  - 2013
SP  - 568
EP  - 589
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2013_49_4_a4/
LA  - en
ID  - KYB_2013_49_4_a4
ER  - 
%0 Journal Article
%A Carravetta, Francesco
%A Palumbo, Pasquale
%A Pepe, Pierdomenico
%T Memoryless solution to the optimal control problem for linear systems with delayed input
%J Kybernetika
%D 2013
%P 568-589
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2013_49_4_a4/
%G en
%F KYB_2013_49_4_a4
Carravetta, Francesco; Palumbo, Pasquale; Pepe, Pierdomenico. Memoryless solution to the optimal control problem for linear systems with delayed input. Kybernetika, Tome 49 (2013) no. 4, pp. 568-589. http://geodesic.mathdoc.fr/item/KYB_2013_49_4_a4/

[1] Basin, M.: New Trends in optimal Filtering and Control for Polynomial and Time-Delay Systems. Lecture Notes in Control and Inform. Sci. 380, Springer-Verlag, Berlin - Heidelberg 2008. | MR | Zbl

[2] Basin, M., Martanez-Zniga, R.: Optimal linear filtering over observations with multiple delays. Internat. J. Robust Nonlinear Control 14 (2004), 8, 685-696. | DOI | MR

[3] Basin, M., Rodriguez-Gonzalez, J., Fridman, L., Acosta, P.: Integral sliding mode design for robust filtering and control of linear stochastic time-delay systems. Internat. J. Robust Nonlinear Control 15 (2005), 9, 407-421. | DOI | MR | Zbl

[4] Basin, M., Rodriguez-Gonzalez, J., Martinez-Zuniga, R.: Optimal control for linear systems with time-delay in control input. J. Franklin Inst. - Engrg. and Appl. Math. 341 (2004), 3, 267-278. | DOI | MR | Zbl

[5] Boukas, E.-K., Liu, Z.-K.: Deterministic and Stochastic Time Delay Systems. Birkhauser, Boston 2002. | Zbl

[6] Carravetta, F., Palumbo, P., Pepe, P.: Quadratic optimal control of linear systems with time-varying input delay. In: Proc. 49th IEEE Conf. on Dec. and Control (CDC), Atlanta 2010, pp. 4996-5000.

[7] Carravetta, F., Palumbo, P., Pepe, P.: Memoryless solution to the infinite horizon optimal control of LTI systems with delayed input. In: Proc. IASTED Asian Conference on Modelling, Identification and Control (AsiaMIC), Phuket 2012.

[8] Chang, Y. P., Tsai, J. S. H., Shieh, L. S.: Optimal digital redesign of hybrid cascaded input-delay systems under state and control constraints. IEEE Trans. Circuits and Systems I - Fundamental Theory and Applications 49 (2002), 9, 1382-1392.

[9] Chopra, N., Berestesky, P., Spong, M. W.: Bilateral teleoperation over unreliable communication networks. IEEE Trans. Control Systems Technol. 16 (2008), 304-313. | DOI

[10] Chyung, D. H.: Discrete systems with delays in control. IEEE Trans. Automat. Control 14 (1969), 196-197. | DOI | MR

[11] Delfour, M. C.: The linear quadratic optimal control problem with delays in state and control variables: A state space approach. SIAM J. Control Optim. 24 (1986), 835-883. | DOI | MR | Zbl

[12] Fridman, E.: New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Systems Control Lett. 43 (2001), 4, 309-319. | DOI | MR | Zbl

[13] Fridman, E.: Stability of linear descriptor systems with delay: a Lyapunov-based approach. J. Math. Anal. Appl. 273 (2002), 24-44. | DOI | MR | Zbl

[14] Gu, K., Kharitonov, V. L., Chen, J.: Stability of Time Delay Systems. Birkhauser, Boston 2003. | Zbl

[15] Ichikawa, A.: Quadratic control of evolution equations with delays in control. SIAM J. Control Optim. 5 (1982), 645-668. | DOI | MR | Zbl

[16] Germani, A., Manes, C., Pepe, P.: Implementation of an LQG control scheme for linear systems with delayed feedback action. In: Proc. 3rd European Control Conference (ECC), Vol. 4, Rome 1995, pp. 2886-2891.

[17] Germani, A., Manes, C., Pepe, P.: A twofold spline approximation for finite horizon LQG control of hereditary systems. SIAM J. Control Optim. 39 (2000), 4, 1233-1295. | DOI | MR | Zbl

[18] Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Series Math. Sci. Engrg. 191, Academic Press, Boston 1993. | MR | Zbl

[19] Kojima, A., Ishijima, S.: Formulas on preview and delayed $H_\infty$ control. In: Proc. 42nd IEEE Conf. on Dec. and Control (CDC), Mauii 2003, pp. 6532-6538.

[20] Krstic, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Birkauser, Boston 2009. | MR | Zbl

[21] Ma, Y. C., Huang, L. F., Zhang, Q. L.: Robust guaranteed cost $H\sb \infty$ control for an uncertain time-varying delay system. (Chinese) Acta Phys. Sinica 56 (2007), 7, 3744-3752. | MR

[22] Milman, M. H.: Approximating the linear quadratic optimal control law for hereditary systems with delays in the control. SIAM J. Control Optim. 2 (1988), 291-320. | DOI | MR | Zbl

[23] Moelja, A. A., Meinsma, G.: $H\sb 2$-optimal control of systems with multiple i/o delays: time domain approach. Automatica 41 (2005), 7, 1229-1238. | DOI | MR

[24] Mondié, S., Michiels, W.: Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Trans. Automat. Control 48, 12, 2207-2212. | DOI | MR

[25] Niculescu, S.-I.: Delay Effects on Stability, A Robust Control Approach. LNCIS 269, Springer-Verlag, London Limeted 2001. | MR | Zbl

[26] Kuang, Y.: Delay Differential Equations With Applications in Population Dynamics. Math. Sci. Engrg. 191, Academic Press Inc., San Diego 1993. | MR | Zbl

[27] Pandolfi, P.: The standard regulator problem for systems with input delays. An approach through singular control theory. Appl. Math. Optim. 31 (1995), 119-136. | DOI | MR | Zbl

[28] Pepe, P., Jiang, Z.-P.: A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems. Syst. Control Lett. 55 (2006), 1006-1014. | DOI | MR | Zbl

[29] Pindyck, R. S.: The discrete-time tracking problem with a time delay in the control. IEEE Trans. Automat. Control 17 (1972), 397-398. | DOI | MR

[30] Polushin, I., Marquez, H. J., Tayebi, A., Liu, P. X.: A multichannel IOS small gain theorm for systems with multiple time-varying communication delays. IEEE Trans. Automat. Control 54 (2009), 404-409. | DOI | MR

[31] Tadmor, G.: The standard $H_{\infty}$ problem in systems with a single input delay. IEEE Trans. Automat. Control 45 (2000), 382-397. | DOI | MR | Zbl

[32] Wang, P. K. C.: Optimal control for discrete-time systems with time-lag controls. IEEE Trans. Automat. Control 19 (1975), 425-426. | DOI

[33] Zhang, H., Duan, G., Xie, L.: Linear quadratic regulation for linear time-varying systems with multiple input delays. Automatica 42 (2006), 9, 1465-1476. | DOI | MR | Zbl

[34] Zhou, B., Lin, Z., Duan, G.-R.: Truncated predictor feedback for linear systems with long time-varying input delays. Automatica 48 (2012), 10, 2387-2389. | DOI | MR