Keywords: multi-criteria optimization; pair-wise comparison matrix; AHP
@article{KYB_2013_49_3_a6,
author = {Ram{\'\i}k, Jaroslav and Vlach, Milan},
title = {Measuring consistency and inconsistency of pair comparison systems},
journal = {Kybernetika},
pages = {465--486},
year = {2013},
volume = {49},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_3_a6/}
}
Ramík, Jaroslav; Vlach, Milan. Measuring consistency and inconsistency of pair comparison systems. Kybernetika, Tome 49 (2013) no. 3, pp. 465-486. http://geodesic.mathdoc.fr/item/KYB_2013_49_3_a6/
[1] Aguarón, J., Moreno-Jimenéz, J. M.: The geometric consistency index: Approximated thresholds. European J. Oper. Res. 147 (2003), 137-145. | DOI | Zbl
[2] Boyd, J. P.: Numerical methods for Bayesian ratings from paired comparisons. J. Quantitative Anthropology 3 (1991), 117-133.
[3] Bozóki, S., Rapcsák, T.: On Saaty's and Koczkodaj's inconsistencies of pairwise comparison matrices. WP 2007-1, June 2007, Computer and Automation Research Institute, Hungarian Academy of Sciences, http://www.oplab.sztaki.hu/WP_2007_1_Bozoki_Rapcsak.pdf | Zbl
[4] Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Networks and ISDN Systems 30 (1998), 107-117. | DOI
[5] Crawford, G., Williams, C.: A note on the analysis of subjective judgment matrices. J. Math. Psychol. 29 (1985), 387-405. | DOI
[6] Chiclana, F., Herrera, F., Herrera-Viedma, E.: Integrating three representation models in fuzzy multipur-pose decision making nased on fuzzy preference relations. Fuzzy Sets and Systems 97 (1998), 33-48. | MR
[7] Chiclana, F., Herrera, F., Herrera-Viedma, E.: Integrating multiplicative preference relations in a multipur-pose decision making model based on fuzzy preference relations. Fuzzy Sets and Systems 112 (2001), 277-291. | MR
[8] Chiclana, F., Herrera, F., Herrera-Viedma, E., Alonso, S.: Some induced ordered weighted averaging opera-tors and their use for solving group decision-making problems based on fuzzy preference relations. European J. Oper. Res. 182 (2007), 383-399. | DOI
[9] Chiclana, F., Herrera-Viedma, E., Alonso, S.: A note on two methods for estimating missing pairwise preference values. IEEE Trans. Systems, Man and Cybernetics - Part B: Cybernetics 39 (2009), 6, 1628-1633. | DOI
[10] Chiclana, F., Herrera-Viedma, E., Alonso, S., Herrera, F.: Cardinal consistency of reciprocal preference relations: A characterization of multiplicative transitivity. IEEE Trans. Fuzzy Systems 17 (2009), 1, 14-23. | DOI
[11] Dopazo, E., Gonzales-Pachón, J.: Consistency-driven approximation of a pairwise comparison matrix. Kybernetika 39 (2003), 5, 561-568. | MR
[12] Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer, Berlin - Heidelberg - New York - Hong Kong - London - Milan - Tokyo 2006. | MR | Zbl
[13] Fishburn, P. C.: Utility Theory for Decision Making. Wiley, New York 1970. | MR | Zbl
[14] Fishburn, P. C.: Binary choice probabilities: On the varieties of stochastic transitivity. J. Math. Psychol. 10 (1973), 329-352. | DOI | MR | Zbl
[15] Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer, Dordrecht 1994. | Zbl
[16] Gass, S. I., Rapcsák, T.: Singular value decomposition in AHP. European J. Oper. Res. 154 (2004), 573-584. | DOI | MR | Zbl
[17] Golany, B.: A multicriteria evaluation methods from obtaining weights from ratio scale matrices. European J. Oper. Res. 69 (1993), 210-220. | DOI
[18] Herrera-Viedma, E., Herrera, F., Chiclana, F., Luque, M.: Some issues on consistency of fuzzy preference relations. European J. Oper. Res. 154 (2004), 98-109. | DOI | MR | Zbl
[19] Herrera-Viedma, E., Chiclana, F., Herrera, F., Alonso, S.: Group decision-making model with incomplete fuzzy preference relations based on additive consistency. IEEE Trans. Systems, Man and Cybernetics, Part B - Cybernetics 37 (2007), 1, 176-189. | DOI
[20] Krantz, D. H., Luce, R. D., Suppes, P., Tversky, A.: Foundations of Measurement. Vol. I. Academic Press, New York 1971. | MR | Zbl
[21] Mareš, M.: Coalitional fuzzy preferences. Kybernetika 38 (2002), 3, 339-352. | MR | Zbl
[22] Mareš, M.: Fuzzy coalitional structures. Fuzzy Sets and Systems 114 (2000), 3, 23-33. | Zbl
[23] Ramík, J., Korviny, P.: Inconsistency of pairwise comparison matrix with fuzzy elements based on geo-metric mean. Fuzzy Sets and Systems 161 (2010), 1604-1613. | MR
[24] Ramík, J., Vlach, M.: Generalized Concavity in Optimization and Decision Making. Kluwer Publ. Comp., Boston - Dordrecht - London, 2001.
[25] Roberts, F. S.: Measurement theory: with application to decisionmaking, utility and the social sciences. In: Encyklopedia of Mathematics and its Applications, Vol. 7, Addison-Wesley, Reading 1979. | MR
[26] Saaty, T. L.: Fundamentals of Decision Making and Priority Theory with the AHP. RWS Publications, Pittsburgh 1994.
[27] Saaty, T. L.: Multicriteria Decision Making - The Analytical Hierarchy Process. Vol. I. RWS Publications, Pittsburgh 1991.
[28] Stein, W. E., Mizzi, P. J.: The harmonic consistency index for the analytic hierarchy process. European J. Oper. Res. 117 (2007), 488-497. | DOI | Zbl
[29] Tanino, T.: Fuzzy preference orderings in group decision making. Fuzzy Sets and Systems 12 (1984), 117-131. | DOI | MR | Zbl
[30] Tanino, T.: Fuzzy preference relations in group decision making. In: Non-Conventional Preference Relations in Decision Making (J. Kacprzyk and M. Roubens, eds.), Springer-Verlag, Berlin 1988, pp. 54-71. | MR | Zbl