Keywords: variational analysis; second-order theory; generalized differentiation; tilt stability
@article{KYB_2013_49_3_a5,
author = {Mordukhovich, Boris S. and Outrata, Ji\v{r}{\'\i} V.},
title = {Tilt stability in nonlinear programming under {Mangasarian-Fromovitz} constraint qualification},
journal = {Kybernetika},
pages = {446--464},
year = {2013},
volume = {49},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_3_a5/}
}
TY - JOUR AU - Mordukhovich, Boris S. AU - Outrata, Jiří V. TI - Tilt stability in nonlinear programming under Mangasarian-Fromovitz constraint qualification JO - Kybernetika PY - 2013 SP - 446 EP - 464 VL - 49 IS - 3 UR - http://geodesic.mathdoc.fr/item/KYB_2013_49_3_a5/ LA - en ID - KYB_2013_49_3_a5 ER -
Mordukhovich, Boris S.; Outrata, Jiří V. Tilt stability in nonlinear programming under Mangasarian-Fromovitz constraint qualification. Kybernetika, Tome 49 (2013) no. 3, pp. 446-464. http://geodesic.mathdoc.fr/item/KYB_2013_49_3_a5/
[1] Artacho, F. J. A. Aragón, Goeffroy, M. H.: Characterization of metric regularity of subdifferentials. J. Convex Anal. 15 (2008), 365-380. | MR
[2] Bonnans, F. J., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York 2000. | MR | Zbl
[3] Dontchev, A. L., Rockafellar, R. T.: Characterizations of strong regularity for variational inequalities over polyhedral convex sets. SIAM J. Optim. 6 (1996), 1087-1105. | DOI | MR | Zbl
[4] Dontchev, A. L., Rockafellar, R. T.: Characterizations of Lipschitzian stability in nonlinear programming. In: Mathematical Programming with Data Perturbations (A. V. Fiacco, ed.), Marcel Dekker, New York 1997, pp. 65-82. | MR | Zbl
[5] Dontchev, A. L., Rockafellar, R. T.: Implicit Functions and Solution Mappings. A View from Variational Analysis. Springer, Dordrecht 2009. | MR | Zbl
[6] Drusvyatskiy, D., Lewis, A. S.: Tilt stability, uniform quadratic growth, and strong metric regularity of the subdifferential. SIAM J. Optim. 23 (2013), 256-267. | DOI | MR
[7] Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York 2003. | Zbl
[8] Henrion, R., Mordukhovich, B. S., Nam, N. M.: Second-order analysis of polyhedral systems in finite and infinite dimensions with applications to robust stability of variational inequalities. SIAM J. Optim. 20 (2010), 2199-2227. | DOI | MR | Zbl
[9] Henrion, R., Outrata, J. V., Surowiec, T.: On the coderivative of normal cone mappings to inequality systems. Nonlinear Anal. 71 (2009), 1213-1226. | DOI | MR
[10] Henrion, R., Outrata, J. V., Surowiec, T.: On regular coderivatives in parametric equalibria with non-unique multipliers. Math. Programming Ser. B 136 (2012), 111-131. | DOI | MR
[11] Henrion, R., Kruger, A. Y., Outrata, J. V.: Some remarks on stability of generalized equations. J. Optim. Theory Appl., DOI 10.1007 s 10957-012-0147-x.
[12] Izmailov, A. F., Kurennoy, A. S., Solodov, M. V.: A note on upper Lipschitz stability, error bounds, and critical multipliers for Lipschitz continuous KKT systems. Math. Programming, DOI 10.1007/s 10107-012-0586-z.
[13] Janin, R.: Directional derivative of marginal function in nonlinear programming. Math. Programming Stud. 21 (1984), 110-126. | DOI | MR
[14] Klatte, D.: On the stability of local and global solutions in parametric problems of nonlinear programming. Part I: Basic results. Seminarbericht 75 der Sektion Mathematik der Humboldt-Universitat zu Berlin 1985, pp. 1-21, | MR
[15] Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications. Kluwer, Boston 2002. | MR | Zbl
[16] Kojima, M.: Strongly stable stationary solutions in nonlinear programs. In: Analysis and Computation of Fixed Points (S. M. Robinson, ed.), Academic Press, New York 1980, pp. 93-138. | MR | Zbl
[17] Levy, A. B., Poliquin, R. A., Rockafellar, R. T.: Stability of local optimal solutions. SIAM J. Optim. 10 (2000), 580-604. | DOI | MR
[18] Lewis, A. S., Zhang, S.: Partial smoothness, tilt stability, and generalized Hessians. SIAM J. Optim. 23 (2013), 74-94. | DOI | MR
[19] Lu, S.: Implications of the constant rank constraint qualification. Math. Programming 126 (2011), 365-392. | DOI | MR | Zbl
[20] Minchenko, L., Stakhovski, S.: Parametric nonlinear programming problems under the relaxed constant rank condition. SIAM J. Optim. 21 (2011), 314-332. | DOI | MR | Zbl
[21] Mordukhovich, B. S.: Sensitivity analysis in nonsmooth optimization. In: Theoretical Aspects of Industrial Design (D. A. Field and V. Komkov, eds.), SIAM Proc. Appl. Math. 58 (1992), pp. 32-46. Philadelphia. | MR | Zbl
[22] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation. I: Basic Theory, II: Applications. Springer, Berlin 2006. | MR | Zbl
[23] Mordukhovich, B. S., Outrata, J. V.: Second-order subdifferentials and their applications. SIAM J. Optim. 12 (2001), 139-169. | DOI | MR | Zbl
[24] Mordukhovich, B. S., Outrata, J. V.: Coderivative analysis of quasi-variational inequalities with applications to stability and optimization. SIAM J. Optim. 18 (2007), 389-412. | DOI | MR | Zbl
[25] Mordukhovich, B. S., Rockafellar, R. T.: Second-order subdifferential calculus with applications to tilt stability in optimization. SIAM J. Optim. 22 (2012), 953-986. | DOI | MR | Zbl
[26] Outrata, J. V.: Optimality conditions for a class of mathematical programs with equilibrium constraints. Math. Oper. Res. 24 (1999), 627-644. | DOI | MR | Zbl
[27] Outrata, J. M., C., H. Ramírez: On the Aubin property of critical points to perturbed second-order cone programs. SIAM J. Optim. 21 (2011), 798-823. | DOI | MR | Zbl
[28] Poliquin, R. A., Rockafellar, R. T.: Tilt stability of a local minimum. SIAM J. Optim. 8 (1998), 287-299. | DOI | MR | Zbl
[29] Ralph, D., Dempe, S.: Directional derivatives of the solution of a parametric nonlinear program. Math. Programming 70 (1995), 159-172. | DOI | MR | Zbl
[30] Robinson, S. M.: Generalized equations and their solutions, I: Basic theory. Math. Programming Stud. 10 (1979), 128-141. | DOI | MR | Zbl
[31] Robinson, S. M.: Strongly regular generalized equations. Math. Oper. Res. 5 (1980), 43-62. | DOI | MR | Zbl
[32] Robinson, S. M.: Local epi-continuity and local optimization. Math. Programming 37 (1987), 208-223. | DOI | MR | Zbl
[33] Rockafellar, R. T., Wets, R. J.-B.: Variational Analysis. Springer, Berlin 1998. | MR | Zbl