Information in vague data sources
Kybernetika, Tome 49 (2013) no. 3, pp. 433-445 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper deals with the concept of the “size“ or “extent“ of the information in the sense of measuring the improvement of our knowledge after obtaining a message. Standard approaches are based on the probabilistic parameters of the considered information source. Here we deal with situations when the unknown probabilities are subjectively or vaguely estimated. For the considered fuzzy quantities valued probabilities we introduce and discuss information theoretical concepts.
This paper deals with the concept of the “size“ or “extent“ of the information in the sense of measuring the improvement of our knowledge after obtaining a message. Standard approaches are based on the probabilistic parameters of the considered information source. Here we deal with situations when the unknown probabilities are subjectively or vaguely estimated. For the considered fuzzy quantities valued probabilities we introduce and discuss information theoretical concepts.
Classification : 03E72, 94A17
Keywords: alphabet; data source; entropy; fuzziness; information; triangular norm
@article{KYB_2013_49_3_a4,
     author = {Mare\v{s}, Milan and Mesiar, Radko},
     title = {Information in vague data sources},
     journal = {Kybernetika},
     pages = {433--445},
     year = {2013},
     volume = {49},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_3_a4/}
}
TY  - JOUR
AU  - Mareš, Milan
AU  - Mesiar, Radko
TI  - Information in vague data sources
JO  - Kybernetika
PY  - 2013
SP  - 433
EP  - 445
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2013_49_3_a4/
LA  - en
ID  - KYB_2013_49_3_a4
ER  - 
%0 Journal Article
%A Mareš, Milan
%A Mesiar, Radko
%T Information in vague data sources
%J Kybernetika
%D 2013
%P 433-445
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2013_49_3_a4/
%G en
%F KYB_2013_49_3_a4
Mareš, Milan; Mesiar, Radko. Information in vague data sources. Kybernetika, Tome 49 (2013) no. 3, pp. 433-445. http://geodesic.mathdoc.fr/item/KYB_2013_49_3_a4/

[1] Bezdek, J. C.: Analysis of Fuzzy Information. CRC-Press, Boca Raton 1988. | Zbl

[2] Calvo, T., Mayor, G., Mesiar, R.: Aggregation Operators. New Trends and Applications, Physica-Verlag, Heidelberg 2002. | MR | Zbl

[3] Luca, A. De, Termini, S.: A definition of a non probabilistic entropy in the setting of fuzzy set theory. Inform. and Control 20 (1972), 301-312. | DOI | MR

[4] Dubois, D., Kerre, E., Mesiar, R., Prade, H.: Fuzzy interval analysis. In: Fundamentals of Fuzzy Sets, Kluwer, Dordrecht 2000, pp. 483-581. | MR | Zbl

[5] Dubois, D., Prade, H.: Possibility Theory. An Approach to Computerized Processing of Uncertainty. Plenum Press, New York 1988. | MR | Zbl

[6] Feinstein, A.: Foundations of Information Theory. McGraw-Hill, New York 1957. | MR | Zbl

[7] Giachetti, R. E., Young, R. E.: A parametric representation of fuzzy numbers and their arithmetic operators. Fuzzy Sets and Systems 91 (1997), 185-202. | MR | Zbl

[8] Hartley, R. V. L.: Transmission of information. Bell System Techn. J. 7 (1928), 3, 535-563.

[9] Havrda, J., Charvát, F.: Quantification method of classifications processes. Concept of structural a-entropy. Kybernetika 3 (1967), 1, 30-35. | MR

[10] Fériet, J. Kampé de: Théories de l'information. Springer, Berlin 1974. | MR

[11] Fériet, J. Kampé de, Forte, B.: Information et probabilité. C. R. Acad. Sci. Paris, Sér. A 265 1967, 110-114; 142-146; 350-353.

[12] Kerre, E. E., Wang, X.: Reasonable properties for the ordering of fuzzy quantities. Part I., Part II. Fuzzy Sets and Systems 118 (2001), 375-385; 387-405.

[13] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht 2000. | MR | Zbl

[14] Klir, G. J., Folger, T. A.: Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs 1988. | MR | Zbl

[15] Klir, G. J.: Fuzzy arithmetic with requisite constraints. Fuzzy Sets and Systems 91 (1997), 2, 165-175. | DOI | MR | Zbl

[16] Kolesárová, A., Vivona, D.: Entropy of T-sums and T-products of $L-R$ fuzzy numbers. Kybernetika 37 (2001), 2, 127-145. | MR | Zbl

[17] Mareš, M.: Computation Over Fuzzy Quantities. CRC-Press, Boca Raton 1994. | MR | Zbl

[18] Mareš, M.: Weak arithmetics of fuzzy numbers. Fuzzy Sets and Systems 91 (1997), 143-154. | DOI | MR

[19] Mareš, M.: Compenzational vagueness. In: Proc. EUSFLAT'2007 (M. Štepnička, V. Novák, and U. Bodenhofer, eds.), Ostrava 2007, pp. 179-184.

[20] Mareš, M., Mesiar, R.: Verbally generated fuzzy quantities. In: Aggregation Operators. New Trends and Applications(T. Calvo, G. Mayor, and R. Mesiar (eds.), Physica-Verlag, Heidelberg 2002, pp. 291-353. | MR | Zbl

[21] Mareš, M., Mesiar, R.: Information in granulated data sources. In: Proc. Internat. Conf. on Soft Computing, Computing with Words and Perceptions in Systems (W. Pedrycz, R. Aliev, Mo Jamshidi, and B. Turksen, eds.), Antalya 2007.

[22] Mesiar, R.: Triangular norms-based addition of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 73-78. | DOI | MR

[23] Mesiar, R., Saminger, S.: Domination of ordered weighted averaging operators over $t$-norms. Soft Computing 8 (2004), 562-570. | DOI | Zbl

[24] Nguyen, H. T.: A note on the extension principle for fuzzy sets. J. Math. Anal. Appl. 64 (1978), 369-380. | DOI | MR | Zbl

[25] and, C. Shannon, Weaver, W.: A mathematical theory of communication. Bell System Techn. J. 27 (1948), 379-423; 623-653. | MR

[26] Sugeno, M.: Theory of Fuzzy Integrals and Its Applications. PhD. Thesis, Tokyo Institute of Technology, 1974.

[27] Vivona, D., Divari, M.: On a conditional information for fuzzy sets. In: Proc. AGOP'2005, Lugano 2005, pp. 147-149.

[28] Winkelbauer, K.: Communication channels with finite past history. In: Trans. Second Prague Conference, Statistical Decision Functions and Random Processes, Prague 1959. Publishing House of the Czechoslovak Academy of Sci., Prague 1960, pp. 685-831. | MR | Zbl

[29] Zadeh, L. A.: Fuzzy sets. Inform. and Control 8 (1965), 338-353. | DOI | MR | Zbl

[30] Zadeh, L. A.: The concept of a linguistic variable and its application to approximate reasoning. Inform. Sci. (1975), Part I: 8, 199-249; Part II: 8, 301-357; Part III: 9, 43-80. | DOI | Zbl

[31] Zadeh, L. A.: Fuzzy logic $=$ Computing with words. IEEE Trans. Fuzzy Systems 2 (1977), 103-111. | Zbl

[32] Zadeh, L. A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1 (1978), 3-28. | DOI | MR | Zbl

[33] Zadeh, L. A.: Yes, no and relatively. Chemtech (1987), June: 340-344; July: 406-410.

[34] Zadeh, L. A.: From computing with numbers to computing with words - from manipulation of measurements to manipulation of perception. IEEE Trans. Circuits Systems 45 (1999), 105-119. | MR

[35] Zadeh, L. A.: The concept of cointensive precisation - A key to mechanization of natural language understanding. In: Proc. IPMU, Paris 2006, pp. 13-15.