Keywords: alphabet; data source; entropy; fuzziness; information; triangular norm
@article{KYB_2013_49_3_a4,
author = {Mare\v{s}, Milan and Mesiar, Radko},
title = {Information in vague data sources},
journal = {Kybernetika},
pages = {433--445},
year = {2013},
volume = {49},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_3_a4/}
}
Mareš, Milan; Mesiar, Radko. Information in vague data sources. Kybernetika, Tome 49 (2013) no. 3, pp. 433-445. http://geodesic.mathdoc.fr/item/KYB_2013_49_3_a4/
[1] Bezdek, J. C.: Analysis of Fuzzy Information. CRC-Press, Boca Raton 1988. | Zbl
[2] Calvo, T., Mayor, G., Mesiar, R.: Aggregation Operators. New Trends and Applications, Physica-Verlag, Heidelberg 2002. | MR | Zbl
[3] Luca, A. De, Termini, S.: A definition of a non probabilistic entropy in the setting of fuzzy set theory. Inform. and Control 20 (1972), 301-312. | DOI | MR
[4] Dubois, D., Kerre, E., Mesiar, R., Prade, H.: Fuzzy interval analysis. In: Fundamentals of Fuzzy Sets, Kluwer, Dordrecht 2000, pp. 483-581. | MR | Zbl
[5] Dubois, D., Prade, H.: Possibility Theory. An Approach to Computerized Processing of Uncertainty. Plenum Press, New York 1988. | MR | Zbl
[6] Feinstein, A.: Foundations of Information Theory. McGraw-Hill, New York 1957. | MR | Zbl
[7] Giachetti, R. E., Young, R. E.: A parametric representation of fuzzy numbers and their arithmetic operators. Fuzzy Sets and Systems 91 (1997), 185-202. | MR | Zbl
[8] Hartley, R. V. L.: Transmission of information. Bell System Techn. J. 7 (1928), 3, 535-563.
[9] Havrda, J., Charvát, F.: Quantification method of classifications processes. Concept of structural a-entropy. Kybernetika 3 (1967), 1, 30-35. | MR
[10] Fériet, J. Kampé de: Théories de l'information. Springer, Berlin 1974. | MR
[11] Fériet, J. Kampé de, Forte, B.: Information et probabilité. C. R. Acad. Sci. Paris, Sér. A 265 1967, 110-114; 142-146; 350-353.
[12] Kerre, E. E., Wang, X.: Reasonable properties for the ordering of fuzzy quantities. Part I., Part II. Fuzzy Sets and Systems 118 (2001), 375-385; 387-405.
[13] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht 2000. | MR | Zbl
[14] Klir, G. J., Folger, T. A.: Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs 1988. | MR | Zbl
[15] Klir, G. J.: Fuzzy arithmetic with requisite constraints. Fuzzy Sets and Systems 91 (1997), 2, 165-175. | DOI | MR | Zbl
[16] Kolesárová, A., Vivona, D.: Entropy of T-sums and T-products of $L-R$ fuzzy numbers. Kybernetika 37 (2001), 2, 127-145. | MR | Zbl
[17] Mareš, M.: Computation Over Fuzzy Quantities. CRC-Press, Boca Raton 1994. | MR | Zbl
[18] Mareš, M.: Weak arithmetics of fuzzy numbers. Fuzzy Sets and Systems 91 (1997), 143-154. | DOI | MR
[19] Mareš, M.: Compenzational vagueness. In: Proc. EUSFLAT'2007 (M. Štepnička, V. Novák, and U. Bodenhofer, eds.), Ostrava 2007, pp. 179-184.
[20] Mareš, M., Mesiar, R.: Verbally generated fuzzy quantities. In: Aggregation Operators. New Trends and Applications(T. Calvo, G. Mayor, and R. Mesiar (eds.), Physica-Verlag, Heidelberg 2002, pp. 291-353. | MR | Zbl
[21] Mareš, M., Mesiar, R.: Information in granulated data sources. In: Proc. Internat. Conf. on Soft Computing, Computing with Words and Perceptions in Systems (W. Pedrycz, R. Aliev, Mo Jamshidi, and B. Turksen, eds.), Antalya 2007.
[22] Mesiar, R.: Triangular norms-based addition of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 73-78. | DOI | MR
[23] Mesiar, R., Saminger, S.: Domination of ordered weighted averaging operators over $t$-norms. Soft Computing 8 (2004), 562-570. | DOI | Zbl
[24] Nguyen, H. T.: A note on the extension principle for fuzzy sets. J. Math. Anal. Appl. 64 (1978), 369-380. | DOI | MR | Zbl
[25] and, C. Shannon, Weaver, W.: A mathematical theory of communication. Bell System Techn. J. 27 (1948), 379-423; 623-653. | MR
[26] Sugeno, M.: Theory of Fuzzy Integrals and Its Applications. PhD. Thesis, Tokyo Institute of Technology, 1974.
[27] Vivona, D., Divari, M.: On a conditional information for fuzzy sets. In: Proc. AGOP'2005, Lugano 2005, pp. 147-149.
[28] Winkelbauer, K.: Communication channels with finite past history. In: Trans. Second Prague Conference, Statistical Decision Functions and Random Processes, Prague 1959. Publishing House of the Czechoslovak Academy of Sci., Prague 1960, pp. 685-831. | MR | Zbl
[29] Zadeh, L. A.: Fuzzy sets. Inform. and Control 8 (1965), 338-353. | DOI | MR | Zbl
[30] Zadeh, L. A.: The concept of a linguistic variable and its application to approximate reasoning. Inform. Sci. (1975), Part I: 8, 199-249; Part II: 8, 301-357; Part III: 9, 43-80. | DOI | Zbl
[31] Zadeh, L. A.: Fuzzy logic $=$ Computing with words. IEEE Trans. Fuzzy Systems 2 (1977), 103-111. | Zbl
[32] Zadeh, L. A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1 (1978), 3-28. | DOI | MR | Zbl
[33] Zadeh, L. A.: Yes, no and relatively. Chemtech (1987), June: 340-344; July: 406-410.
[34] Zadeh, L. A.: From computing with numbers to computing with words - from manipulation of measurements to manipulation of perception. IEEE Trans. Circuits Systems 45 (1999), 105-119. | MR
[35] Zadeh, L. A.: The concept of cointensive precisation - A key to mechanization of natural language understanding. In: Proc. IPMU, Paris 2006, pp. 13-15.