Keywords: cooperative games; one-point solutions; additive games; Harsanyi dividends
@article{KYB_2013_49_3_a1,
author = {Tanino, Tetsuzo},
title = {One-point solutions obtained from best approximation problems for cooperative games},
journal = {Kybernetika},
pages = {395--403},
year = {2013},
volume = {49},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_3_a1/}
}
Tanino, Tetsuzo. One-point solutions obtained from best approximation problems for cooperative games. Kybernetika, Tome 49 (2013) no. 3, pp. 395-403. http://geodesic.mathdoc.fr/item/KYB_2013_49_3_a1/
[1] Charnes, A., Rousseau, J., Seiford, L.: Complements, molifiers and the propensity to disrupt. Internat. J. Game Theory 7 (1978), 37-50. | DOI | MR
[2] Derks, J., Laan, G. van der, Vasil'ev, V.: Characterizations of the random order values by Harsanyi payoff vectors. Math. Methods Oper. Res. 64 (2006), 155-163. | DOI | MR
[3] Grabisch, M.: $k$-order additive discrete fuzzy measures and their representations. Fuzzy Sets and Systems 92 (1997), 167-189. | DOI | MR
[4] Harsanyi, J. C.: A simplified bargaining model for the $n$-person cooperative game. Internat. Econom. Rev. 4 (1963), 194-220. | DOI | Zbl
[5] Kultti, K., Salonen, H.: Minimum norm solutions for cooperative games. Internat. J. Game Theory 35 (2007), 591-602. | DOI | MR | Zbl
[6] Monderer, D., Samet, D.: Variations on the Shapley value. In: Handbook of Game Theory with Economic Applications, Vol. 3 (R. Aumann and S. Hart, eds.), Elsevier Science Publishers, Amsterdam 2002, pp. 2055-2076.
[7] Ruiz, L. M., Valenciano, F., Zarzuelo, F. M.: The family of least square values for transferable utility games. Games and Econom. Behavior 24 (1998), 109-130. | DOI | MR | Zbl
[8] Ruiz, L. M., Valenciano, F., Zarzuelo, F. M.: Some new results on least square values for TU games. TOP 6 (1998), 139-158. | DOI | MR | Zbl