Keywords: chaotic attractors; stable equilibrium; Shilnikov theorem; Lyapunov exponent; synchronization
@article{KYB_2013_49_2_a9,
author = {Wei, Zhouchao and Wang, Zhen},
title = {Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium},
journal = {Kybernetika},
pages = {359--374},
year = {2013},
volume = {49},
number = {2},
mrnumber = {3085401},
zbl = {1276.34043},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a9/}
}
TY - JOUR AU - Wei, Zhouchao AU - Wang, Zhen TI - Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium JO - Kybernetika PY - 2013 SP - 359 EP - 374 VL - 49 IS - 2 UR - http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a9/ LA - en ID - KYB_2013_49_2_a9 ER -
Wei, Zhouchao; Wang, Zhen. Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium. Kybernetika, Tome 49 (2013) no. 2, pp. 359-374. http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a9/
[1] Chen, G. R., Ueta, T.: Yet another chaotic attractor. Internat. J. Bifur. Chaos 9 (1999), 1465-1466. | DOI | MR | Zbl
[2] Lorenz, E. N.: Deterministic non-periodic flow. J. Atmospheric Sci. 20 (1963), 130-141. | DOI
[3] Lü, J. H., Chen, G. R.: A new chaotic attractor coined. Internat. J. Bifur. Chaos 12 (2002), 659-661. | DOI | MR | Zbl
[4] Lü, J. H., Chen, G. R., Cheng, D. Z.: A new chaotic system and beyond: The generalized Lorenz-like system. Internat. J. Bifur. Chaos 14 (2004), 1507-1537. | DOI | MR | Zbl
[5] Lü, J. H., Han, F. L., Yu, X. H., Chen, G. R.: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method. Automatica 40 (2004), 1677-1687. | DOI | MR | Zbl
[6] Lü, J. H., Yu, S. M., Leung, H., Chen, G. R.: Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circuits Systems C I: Regular Papers 53 (2006), 149-165. | DOI
[7] Liu, Y. J., Pang, G. P.: The basin of attraction of the Liu system. Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 2065-2071. | DOI | MR | Zbl
[8] Li, J. M.: Limit cycles bifurcated from a reversible quadratic center. Qualit. Theory Dynam. Systems 6 (2005), 205-215. | DOI | MR | Zbl
[9] Rössler, O. E.: An equation for continuious chaos. Phys. Lett. A 57 (1976), 397-398. | DOI
[10] Silva, C. P.: Shilnikov's theorem - A tutorial. IEEE Trans. Circuits Syst. I 40 (1993), 657-682. | DOI | MR
[11] Sprott, J. C.: Some simple chaotic flows. Phys. Rev. E 50 (1994), 647-650. | DOI | MR
[12] Sprott, J. C.: A new class of chaotic circuit. Phys. Lett. A 266 (2000), 19-23. | DOI
[13] Sprott, J. C.: Simplest dissipative chaotic flow. Phys. Lett. A 228 (1997), 271-274. | DOI | MR | Zbl
[14] Shilnikov, L. P.: A case of the existence of a countable number of periodic motions. Soviet Math. Dokl. 6 (1965), 163-166.
[15] Shilnikov, L. P.: A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type. Math. USSR-Sb. 10 (1970), 91-102. | DOI
[16] Shaw, R.: Strange attractor, chaotic behaviour and information flow. Z. Naturforsch. 36A (1981), 80-112. | MR
[17] Schrier, G. V., Maas, L. R. M.: The difusionless Lorenz equations: Shilnikov bifurcations and reduction to an explicit map. Physica D 141 (2000), 19-36. | MR
[18] Vaněček, A., Čelikovský, S.: Control Systems: From Linear Analysis to Synthesis of Chaos. Prentice-Hall, London 1996. | Zbl
[19] Wang, X., Chen, G. R.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1264-1272. | DOI | MR
[20] Wang, Z.: Existence of attractor and control of a 3D differential system. Nonlinear Dynamics 60(3) (2010), 369-373. | DOI | MR | Zbl
[21] Wei, Z. C.: Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 376 (2011), 248-253. | MR | Zbl
[22] Yang, Q. G., Chen, G. R., Huang, K. F.: Chaotic attractors of the conjugate Lorenz-type system. Internat. J. Bifur. Chaos 17 (2007), 3929-3949. | DOI | MR | Zbl
[23] Yang, Q. G., Chen, G. R.: A chaotic system with one saddle and two stable node-foci. Internat. J. Bifur. Chaos 18 (2008), 1393-1414. | DOI | MR | Zbl
[24] Yang, Q. G., Wei, Z. C., Chen, G. R.: A unusual 3D autonomons quadratic chaotic system with two stable node-foci. Internat. J. Bifur. Chaos 20 (2010), 1061-1083. | DOI | MR
[25] Yu, S. M., Lü, J. H., Yu, X. H.: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circuits Systems C I: Regular Papers 59 (2012), 1015-1028. | DOI | MR
[26] Zhao, L. Q., Wang, Q.: Perturbations from a kind of quartic hamiltonians under general cubic polynomials. Sci. China Series A: Mathematics 52 (2009), 427-442. | DOI | MR | Zbl