Global finite-time observers for a class of nonlinear systems
Kybernetika, Tome 49 (2013) no. 2, pp. 319-340 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Global finite-time observers are designed for a class of nonlinear systems with bounded varying rational powers imposed on the increments of the nonlinearities whose solutions exist and are unique for all positive time. The global finite-time observers designed in this paper are with two homogeneous terms. The global finite-time convergence of the observation error system is achieved by combining global asymptotic stability and local finite-time stability.
Global finite-time observers are designed for a class of nonlinear systems with bounded varying rational powers imposed on the increments of the nonlinearities whose solutions exist and are unique for all positive time. The global finite-time observers designed in this paper are with two homogeneous terms. The global finite-time convergence of the observation error system is achieved by combining global asymptotic stability and local finite-time stability.
Classification : 93B07, 93C10, 93D20
Keywords: global finite-time observer; nonlinear system; homogeneity
@article{KYB_2013_49_2_a7,
     author = {Li, Yunyan and Shen, Yanjun and Xia, Xiaohua},
     title = {Global finite-time observers for a class of nonlinear systems},
     journal = {Kybernetika},
     pages = {319--340},
     year = {2013},
     volume = {49},
     number = {2},
     mrnumber = {3085399},
     zbl = {1264.93029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a7/}
}
TY  - JOUR
AU  - Li, Yunyan
AU  - Shen, Yanjun
AU  - Xia, Xiaohua
TI  - Global finite-time observers for a class of nonlinear systems
JO  - Kybernetika
PY  - 2013
SP  - 319
EP  - 340
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a7/
LA  - en
ID  - KYB_2013_49_2_a7
ER  - 
%0 Journal Article
%A Li, Yunyan
%A Shen, Yanjun
%A Xia, Xiaohua
%T Global finite-time observers for a class of nonlinear systems
%J Kybernetika
%D 2013
%P 319-340
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a7/
%G en
%F KYB_2013_49_2_a7
Li, Yunyan; Shen, Yanjun; Xia, Xiaohua. Global finite-time observers for a class of nonlinear systems. Kybernetika, Tome 49 (2013) no. 2, pp. 319-340. http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a7/

[1] Bestle, D., Zeitz, M.: Cannonical form observer design for non-linear time-variable systems. Internat. J. Control 38 (1983), 419-431. | DOI | MR

[2] Bhat, S. P., Bernstein, D. S.: Finite-time stability of continous autonomous systems. SIAM J. Control Optim. 38 (2000), 751-766. | DOI | MR

[3] Bhat, S. P., Bernstein, D. S.: Geometric homogeneity with applications to finite-time stability. Math. Control Sign. Systems 17 (2005), 101-127. | DOI | MR | Zbl

[4] Chen, M. S., Chen, C. C.: Robust nonlinear observer for Lipschitz nonlinear systems subject to disturbances. IEEE Trans. Automat. Control 52 (2007), 2365-2369. | DOI | MR

[5] Engel, R., Kreisselmeier, G.: A continuous-time observer which converges in finite time. IEEE Trans. Automat. Control 47 (2002), 1202-1204. | DOI | MR

[6] Gauthier, J. P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. Automat. Control 37 (1992), 875-880. | DOI | MR | Zbl

[7] Hammouri, H., Targui, B., Armanet, F.: High gain observer based on a triangular structure. Internat. J. Robust Nonlinear Control 12 (2002), 497-518. | DOI | MR | Zbl

[8] Hong, Y., Xu, Y., Huang, J.: Finite-time control for manipulators. Systems Control Lett. 46 (2002), 243-253. | DOI | MR

[9] Kotta, Ü.: Application of inverse system for linearization and decoupling. Systems Control Lett. 8 (1987), 453-457. | DOI | Zbl

[10] Krener, A. J., Isidori, A.: Linearization by output injection and nonlinear observers. Syst.ems Control Lett. 3 (1983), 47-52. | MR | Zbl

[11] Krishnamurthy, P., Khorrami, F., Chandra, R. S.: Global high-gain-based observer and backstepping controller for generalized output-feedback canonical form. IEEE Trans. Automat. Control 48 (2003), 2277-2284. | DOI | MR

[12] Levine, J., Marino, R.: Nonlinear systems immersion, observers and finite dimensional filters. Systems Control Lett. 7 (1986), 133-142. | DOI | MR

[13] Li, J., Qian, C., Frye, M. T.: A dual-observer design for global output feedback stabilization of nonlinear systems with low-order and high-order nonlinearities. Internat. J. Robust Nonlinear Control 19 (2009), 1697-1720. | DOI | MR

[14] Ménard, T., Moulay, E., Perruquetti, W.: A global high-gain finite-time observer. IEEE Trans. Automat. Control 55 (2010), 1500-1506. | DOI | MR

[15] Moulay, E., Perruquetti, W.: Finite time stability and stabilization of a class of continuous systems. J. Math. Anal. Appl. 323 (2006), 1430-1443. | DOI | MR | Zbl

[16] Moulay, E., Perruquetti, W.: Finite-time stability conditions for non-autonomous continuous systems. Internat. J. Control 81 (2008), 797-803. | DOI | MR | Zbl

[17] Perruquetti, W., Floquet, T., Moulay, E.: Finite-time observers: application to secure communication. IEEE Trans. Automat. Control 53 (2008), 356-360. | DOI | MR

[18] Pertew, A. M., Marquez, H. J., Zhao, Q.: $H_\infty$ observer design for Lipschitz nonlinear systems. IEEE Trans. Automat. Control 51 (2006), 1211-1216. | DOI | MR

[19] Praly, L.: Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate. IEEE Trans. Automat. Control 48 (2003), 1103-1108. | DOI | MR

[20] Raghavan, S., Hedrick, J. K.: Observer design for a class of nonlinear systems. Internat. J. Control 59 (1994), 515-528. | DOI | MR | Zbl

[21] Rajamani, R.: Observers for Lipschitz nonlinear systems. IEEE Trans. Automat. Control 43 (1998), 397-401. | DOI | MR | Zbl

[22] Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field. Systems Control Lett. 19 (1992), 467-473. | DOI | MR | Zbl

[23] Shen, Y., Huang, Y.: Uniformly observable and globally Lipschitzian nonlinear systems admit global finite-time observers. IEEE Trans. Automat. Control 54 (2009), 2621-2625. | DOI | MR

[24] Shen, Y., Xia, X.: Semi-global finite-time observers for nonlinear systems. Automatica 44 (2008), 3152-3156. | DOI | MR | Zbl

[25] Shen, Y., Xia, X.: Semi-global finite-time observers for a class of non-Lipschitz systems. In: Nolcos, Bologna 2010, pp. 421-426.

[26] Shen, Y., Xia, X.: Global asymptotical stability and global finite-time stability for nonlinear homogeneous systems. In: 18th IFAC World Congress, Milan 2011, pp. 4644-4647.

[27] Thau, F. E.: Observing the state of nonlinear dynamic systems. Internat. J. Control 17 (1973), 471-479. | DOI

[28] Venkataraman, S. T., Gulati, S.: Terminal slider control of nonlinear systems. In: Proc. IEEE International Conference of Advanced Robotics, Pisa 1990, pp. 2513-2514.

[29] Xia, X., Gao, W.: Nonlinear observer design by observer error linearization. SIAM J. Control Optim. 27 (1989), 199-216. | DOI | MR | Zbl

[30] Zeitz, M.: The extended Luenberger observer for nonlinear systems. Systems Control Lett. 9 (1987), 149-156. | DOI | MR | Zbl