Keywords: degenerate diffusion; Allen–Cahn equation; image segmentation; magnetic resonance imaging
@article{KYB_2013_49_2_a6,
author = {Chabiniok, Radom{\'\i}r and M\'aca, Radek and Bene\v{s}, Michal and Tint\v{e}ra, Jaroslav},
title = {Segmentation of {MRI} data by means of nonlinear diffusion},
journal = {Kybernetika},
pages = {301--318},
year = {2013},
volume = {49},
number = {2},
mrnumber = {3085398},
zbl = {1266.94004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a6/}
}
TY - JOUR AU - Chabiniok, Radomír AU - Máca, Radek AU - Beneš, Michal AU - Tintěra, Jaroslav TI - Segmentation of MRI data by means of nonlinear diffusion JO - Kybernetika PY - 2013 SP - 301 EP - 318 VL - 49 IS - 2 UR - http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a6/ LA - en ID - KYB_2013_49_2_a6 ER -
Chabiniok, Radomír; Máca, Radek; Beneš, Michal; Tintěra, Jaroslav. Segmentation of MRI data by means of nonlinear diffusion. Kybernetika, Tome 49 (2013) no. 2, pp. 301-318. http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a6/
[1] Allen, S., Cahn, J. W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27 (1979), 1084-1095. | DOI
[2] Beneš, M.: Mathematical analysis of phase-field equations with numerically efficient coupling terms. Interfaces and Free Boundaries 3 (2001), 201-221. | DOI | MR | Zbl
[3] Beneš, M., Chalupecký, V., Mikula, K.: Geometrical image segmentation by the Allen-Cahn equation. Appl. Numer. Math. 51 (2004), 2, 187-205. | DOI | MR | Zbl
[4] Beneš, M., Chabiniok, R., Kimura, M., Mikula, K.: Nonlinear Gauss-Seidel scheme for Allen-Cahn type systems. In: MAGIA 2007 (Mathematics, Geometry and Their Applications)(M. Vajsáblová and P. Struk, eds.), Publishing House of Slovak Technical University, Bratislava 2008, pp. 29-35.
[5] Bogaert, J., Dymarkowski, S., Taylor, A. M.: Clinical Cardiac MRI. Springer, Berlin - Heidelberg 2005.
[6] (ed), A. Bovik: Handbook of Image and Video Processing. Academic Press, San Diego 1990.
[7] Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Analysis and Machine Intelligence 23 (2001), 1222-1239. | DOI
[8] Cerqueira, M. D., Weissman, N. J., al., V. Dilsizian et: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement of healthcare professionals from the Cardiac Imaging Comittee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105 (2002), 539-542.
[9] Cheng, Y.: Mean shift, mode deeking, and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 17 (1995), 790-799. | DOI
[10] Crandall, M. G., Ishii, H., Lions, P. L.: User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992), 1-67. | DOI | MR | Zbl
[11] Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence 6 (1984), 721-741. | DOI
[12] Heiberg, E., Wigstrom, L., Carlsson, M., Bolger, A. F., Karlsson, M.: Time resolved three-dimensional automated segmentation of the left ventricle. In: Proc. IEEE Computers in Cardiology 2005 (32), Lyon 2005, pp. 599-602.
[13] Heiberg, E., Sjögren, J., Ugander, M., Carlsson, M., Engblom, H., Arheden, H.: Design and validation of SEGMENT - a freely available software for cardiovascular image analysis. BMC Medical Imaging 10 (2010), 1. | DOI
[14] Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Internat. J. Computer Vision 1 (1988), 321-331. | DOI
[15] Máca, R., Beneš, M., Tintěra, J.: Degenerate diffusion methods in computer image processing and application. J. Math-for-Industry 3 (2011), 33-40. | MR
[16] Malladi, R., Sethian, J. A., Vemuri, B.: Shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence 17 (1995), 2, 158-175. | DOI
[17] Mikula, K., Sarti., A., Sgallari, F.: Co-volume level set method in subjective surface based medical image segmentation. In: Handbook of Medical Image Analysis: Segmentation and Registration Models (J. Suri et al., eds.), Springer, New York 2005, pp. 583-626.
[18] Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition 1985, pp. 22-26.
[19] Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer Verlag, New York 2003. | MR | Zbl
[20] Paragios, N., Chen, Y., Faugeras, O.: Handbook of Mathematical Models of Computer Vision. Springer, New York 2005.
[21] Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence 12 (1990), 629-639. | DOI
[22] Zhao, H. K., Osher, S., Chan, T., Merriman, B.: A variational level set approach to multiphase motion. J. Comput. Phys. 127 (1996), 179-195. | DOI | MR | Zbl
[23] Zhu, S., Yuille, A.: Region competition: Unifying snakes, region growing, and Bayes/Mdl for multiband image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 18 (1996), 884-900. | DOI