Keywords: random field theory; Euler characteristic; PET imaging; PET image quality
@article{KYB_2013_49_2_a5,
author = {Dvo\v{r}\'ak, Ji\v{r}{\'\i} and Boldy\v{s}, Ji\v{r}{\'\i} and Skopalov\'a, Magdal\'ena and B\v{e}lohl\'avek, Otakar},
title = {Application of the random field theory in {PET} imaging - injection dose optimization},
journal = {Kybernetika},
pages = {280--300},
year = {2013},
volume = {49},
number = {2},
mrnumber = {3085397},
zbl = {06176038},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a5/}
}
TY - JOUR AU - Dvořák, Jiří AU - Boldyš, Jiří AU - Skopalová, Magdaléna AU - Bělohlávek, Otakar TI - Application of the random field theory in PET imaging - injection dose optimization JO - Kybernetika PY - 2013 SP - 280 EP - 300 VL - 49 IS - 2 UR - http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a5/ LA - en ID - KYB_2013_49_2_a5 ER -
%0 Journal Article %A Dvořák, Jiří %A Boldyš, Jiří %A Skopalová, Magdaléna %A Bělohlávek, Otakar %T Application of the random field theory in PET imaging - injection dose optimization %J Kybernetika %D 2013 %P 280-300 %V 49 %N 2 %U http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a5/ %G en %F KYB_2013_49_2_a5
Dvořák, Jiří; Boldyš, Jiří; Skopalová, Magdaléna; Bělohlávek, Otakar. Application of the random field theory in PET imaging - injection dose optimization. Kybernetika, Tome 49 (2013) no. 2, pp. 280-300. http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a5/
[1] Abbey, C. K., Barrett, H. H.: Human- and model-observer performance in ramp-spectrum noise: effects of regularization and object variability. J. Opt. Soc. Amer. A 18 (2001), 473-488. | DOI
[2] Accorsi, R., Karp, J. S., Surti, S.: Improved dose regimen in pediatric PET. J. Nucl. Med. 51 (2010), 293-300. | DOI
[3] Adler, R. J.: The Geometry of Random Fields. Wiley, London 1981. | MR | Zbl
[4] Adler, R. J., Taylor, J. E.: Random Fields and Geometry. Springer, New York 2007. | MR | Zbl
[5] Boellaard, R.: FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. European J. Nucl. Med. Mol. Imaging 37 (2010), 181-200. | DOI
[6] Boldyš, J.: Monte Carlo simulation of PET images for injection dose optimization. In: Proc. III ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing: VipIMAGE 2011. Taylor and Francis, London 2012.
[7] Brasse, D.: Correction methods for random coincidences in fully 3D whole-nody PET: Impact on data and image quality. J. Nucl. Med. 46 (2005), 859-867.
[8] Cao, J., Worsley, K. J.: Applications of random fields in human brain mapping. In: Spatial Statistics: Methodological Aspects and Applications. Springer Lecture Notes in Statistics 169 (2001), pp. 169-182. | DOI | Zbl
[9] Danna, M.: Optimization of tracer injection for 3D $^{18}$F-FDG whole body (WB) PET studies using an acquisition-specific NEC (AS-NEC) curve generation. IEEE Nucl. Sci. Conf. R. (2004), 2615-2619.
[10] Everaert, H.: Optimal dose of $^{18}$F-FDG required for whole-body PET using an LSO PET camera. European J. Nucl. Med. Mol. Imaging 30 (2003), 1615-1619. | DOI
[11] Gifford, H. C.: Channelized Hotelling and human observer correlation for lesion detection in hepatic SPECT imaging. J. Nucl. Med. 41 (2000), 514-521.
[12] Halpern, B. S.: Optimizing imaging protocols for overweight and obese patients: a lutetium orthosilicate PET/CT study. J. Nucl. Med. 46 (2005), 603-607.
[13] Jacobs, F.: Optimised tracer-dependent dosage cards to obtain weight-independent effective doses. European J. Nucl. Med. Mol. Imaging 32 (2005), 581-588. | DOI
[14] Jan, S.: GATE: a simulation toolkit for PET and SPECT. Phys. Med. Biol. 49 (2004), 4543-4561. | DOI
[15] Mizuta, T.: NEC density and liver ROI S/N ratio for image quality control of whole-body FDG-PET scans: comparison with visual assessment. Mol. Imaging Biol. 11 (2009), 480-486. | DOI
[16] Powsner, R. A., Powsner, E. R.: Essential Nuclear Medicine Physics. Second edition. Wiley-Blackwell, 2006.
[17] Székely, G. J., Rizzo, M. L.: A new test for multivariate normality. J. Multivariate Anal. 93 (2005), 58-80. | DOI | MR | Zbl
[18] Strother, S. C., Casey, M. E., Hoffman, E. J.: Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalents counts. IEEE Trans. Nucl. Sci. 37 (1990), 783-788. | DOI
[19] Taylor, J. E., Worsley, K. J., Gosselin, F.: Maxima of discretely sampled random fields, with an application to 'bubbles'. Biometrika 94 (2007), 1-18. | DOI | MR | Zbl
[20] Thode, H. C.: Testing for Normality. Marcel Dekker, New York 2002. | MR | Zbl
[21] Watson, C. C.: Count rate dependence of local signal-to-noise ratio in positron emission tomography. IEEE Trans. Nucl. Sci. 51 (2004), 2670-2680. | DOI
[22] al., C. C. Watson et: Optimizing injected dose in clinical PET by accurately modeling the counting-rate response functions specific to individual patient scans. J. Nucl. Med. 46 (2005), 1825-1834.
[23] Watson, C. C., Newport, D., Casey, M. E.: Evaluation of simulation-based scatter correction for 3D PET cardiac imaging. IEEE Trans. Nucl. Sci. 44 (1997), 90-97. | DOI
[24] Worsley, K. J.: A three-dimensional statistical analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab. 12 (1992), 900-918. | DOI
[25] Worsley, K. J.: Boundary corrections for the expected Euler characteristic of excursion sets of random fields, with an application to astrophysics. Adv. in Appl. Probab. 27 (1995), 943-959. | DOI | MR | Zbl
[26] Worsley, K. J.: Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images. Ann. Statist. 23 (1995), 640-669. | DOI | MR | Zbl
[27] Worsley, K. J.: Searching scale space for activation in PET images. Hum. Brain Mapp. 4 (1996), 74-90. | DOI
[28] Worsley, K. J.: Detecting changes in non-isotropic images. Hum. Brain Mapp. 8 (1999), 98-101. | DOI