Greedy and lazy representations in negative base systems
Kybernetika, Tome 49 (2013) no. 2, pp. 258-279 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider positional numeration systems with negative real base $-\beta$, where $\beta>1$, and study the extremal representations in these systems, called here the greedy and lazy representations. We give algorithms for determination of minimal and maximal $(-\beta)$-representation with respect to the alternate order. We also show that both extremal representations can be obtained as representations in the positive base $\beta^2$ with a non-integer alphabet. This enables us to characterize digit sequences admissible as greedy and lazy $(-\beta)$-representation. Such a characterization allows us to study the set of uniquely representable numbers. In the case that $\beta$ is the golden ratio and the Tribonacci constant, we give the characterization of digit sequences admissible as greedy and lazy $(-\beta)$-representation using a set of forbidden strings.
We consider positional numeration systems with negative real base $-\beta$, where $\beta>1$, and study the extremal representations in these systems, called here the greedy and lazy representations. We give algorithms for determination of minimal and maximal $(-\beta)$-representation with respect to the alternate order. We also show that both extremal representations can be obtained as representations in the positive base $\beta^2$ with a non-integer alphabet. This enables us to characterize digit sequences admissible as greedy and lazy $(-\beta)$-representation. Such a characterization allows us to study the set of uniquely representable numbers. In the case that $\beta$ is the golden ratio and the Tribonacci constant, we give the characterization of digit sequences admissible as greedy and lazy $(-\beta)$-representation using a set of forbidden strings.
Classification : 11A63, 11A67, 37B10
Keywords: numeration systems; lazy representation; greedy representation; negative base; unique representation
@article{KYB_2013_49_2_a4,
     author = {Hejda, Tom\'a\v{s} and Mas\'akov\'a, Zuzana and Pelantov\'a, Edita},
     title = {Greedy and lazy representations in negative base systems},
     journal = {Kybernetika},
     pages = {258--279},
     year = {2013},
     volume = {49},
     number = {2},
     mrnumber = {3085396},
     zbl = {1275.11020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a4/}
}
TY  - JOUR
AU  - Hejda, Tomáš
AU  - Masáková, Zuzana
AU  - Pelantová, Edita
TI  - Greedy and lazy representations in negative base systems
JO  - Kybernetika
PY  - 2013
SP  - 258
EP  - 279
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a4/
LA  - en
ID  - KYB_2013_49_2_a4
ER  - 
%0 Journal Article
%A Hejda, Tomáš
%A Masáková, Zuzana
%A Pelantová, Edita
%T Greedy and lazy representations in negative base systems
%J Kybernetika
%D 2013
%P 258-279
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a4/
%G en
%F KYB_2013_49_2_a4
Hejda, Tomáš; Masáková, Zuzana; Pelantová, Edita. Greedy and lazy representations in negative base systems. Kybernetika, Tome 49 (2013) no. 2, pp. 258-279. http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a4/

[1] Dajani, K., Kalle, Ch.: Transformations generating negative $\beta$-expansions. Integers 11B (2011), A5, 1-18. | MR

[2] Dajani, K., Kraaikamp, C.: From greedy to lazy expansions and their driving dynamics. Exposition. Math. 20 (2002), 4, 315-327. | DOI | MR | Zbl

[3] Vries, M. de, Komornik, V.: Unique expansions of real numbers. Adv. Math. 221 (2009), 2, 390-427. | DOI | MR | Zbl

[4] Erdös, P., Joó, I., Komornik, V.: Characterization of the unique expansions $1=\sum^\infty_{i=1}q^{-n_i}$ and related problems. Bull. Soc. Math. France 118 (1990), 3, 377-390. | MR

[5] Ito, S., Sadahiro, T.: Beta-expansions with negative bases. Integers 9 (2009), A22, 239-259. | MR | Zbl

[6] Kalle, Ch., Steiner, W.: Beta-expansions, natural extensions and multiple tilings associated with Pisot units. Trans. Amer. Math. Soc. 364 (2012), 2281-2318. | DOI | MR

[7] Parry, W.: On the $\beta $-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416. | DOI | MR | Zbl

[8] Pedicini, M.: Greedy expansions and sets with deleted digits. Theoret. Comput. Sci. 332 (2005), 1-3, 313-336. | DOI | MR | Zbl

[9] Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493. | DOI | MR | Zbl

[10] Schmidt, K.: On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980), 4, 269-278. | DOI | MR | Zbl

[11] Thurston, W.: Groups, tilings, and finite state automata. AMS Colloquium Lecture Notes, American Mathematical Society, Boulder, 1989.