Recursive form of general limited memory variable metric methods
Kybernetika, Tome 49 (2013) no. 2, pp. 224-235 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this report we propose a new recursive matrix formulation of limited memory variable metric methods. This approach can be used for an arbitrary update from the Broyden class (and some other updates) and also for the approximation of both the Hessian matrix and its inverse. The new recursive formulation requires approximately $4 m n$ multiplications and additions per iteration, so it is comparable with other efficient limited memory variable metric methods. Numerical experiments concerning Algorithm 1, proposed in this report, confirm its practical efficiency.
In this report we propose a new recursive matrix formulation of limited memory variable metric methods. This approach can be used for an arbitrary update from the Broyden class (and some other updates) and also for the approximation of both the Hessian matrix and its inverse. The new recursive formulation requires approximately $4 m n$ multiplications and additions per iteration, so it is comparable with other efficient limited memory variable metric methods. Numerical experiments concerning Algorithm 1, proposed in this report, confirm its practical efficiency.
Classification : 49K35, 49M30, 90C06, 90C26, 90C47, 90C51, 90C53
Keywords: unconstrained optimization; large scale optimization; limited memory methods; variable metric updates; recursive matrix formulation; algorithms
@article{KYB_2013_49_2_a2,
     author = {Luk\v{s}an, Ladislav and Vl\v{c}ek, Jan},
     title = {Recursive form of general limited memory variable metric methods},
     journal = {Kybernetika},
     pages = {224--235},
     year = {2013},
     volume = {49},
     number = {2},
     mrnumber = {3085394},
     zbl = {1266.49060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a2/}
}
TY  - JOUR
AU  - Lukšan, Ladislav
AU  - Vlček, Jan
TI  - Recursive form of general limited memory variable metric methods
JO  - Kybernetika
PY  - 2013
SP  - 224
EP  - 235
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a2/
LA  - en
ID  - KYB_2013_49_2_a2
ER  - 
%0 Journal Article
%A Lukšan, Ladislav
%A Vlček, Jan
%T Recursive form of general limited memory variable metric methods
%J Kybernetika
%D 2013
%P 224-235
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a2/
%G en
%F KYB_2013_49_2_a2
Lukšan, Ladislav; Vlček, Jan. Recursive form of general limited memory variable metric methods. Kybernetika, Tome 49 (2013) no. 2, pp. 224-235. http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a2/

[1] Bongartz, I., Conn, A. R., Gould, N., Toint, P. L.: CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Software 21 (1995), 123-160. | DOI | Zbl

[2] Byrd, R. H., Nocedal, J., Schnabel, R. B.: Representation of quasi-Newton matrices and their use in limited memory methods. Math. Programming 63 (1994), 129-156. | DOI | MR

[3] Davidon, W. C.: Optimally conditioned optimization algorithms without line searches. Math. Programming 9 (1975), 1-30. | DOI | MR | Zbl

[4] Dolan, E. D., Moré, J. J.: Benchmarking optimization software with performance profiles. Math. Programming 91 (2002), 201-213. | DOI | MR | Zbl

[5] Hoshino, S.: A formulation of variable metric methods. J. Institute of Mathematics and its Applications 10 (1972), 394-403. | DOI | MR | Zbl

[6] Lukšan, L.: Quasi-Newton methods without projections for unconstrained minimization. Kybernetika 18 (1982), 290-306. | MR | Zbl

[7] Lukšan, L., Matonoha, C., Vlček, J.: Sparse Test Problems for Unconstrained Optimization. Report V-1064, Institute of Computer Science AS CR, Prague 2010.

[8] Lukšan, L., Matonoha, C., Vlček, J.: Modified CUTE Problems for Sparse Unconstrained Optimization. Report V-1081, Institute of Computer Science AS CR, Prague 2010.

[9] Spedicato, L. Lukšan amd E.: Variable metric methods for unconstrained optimization and nonlinear least squares. J. Comput. Appl. Math. 124 (2000), 61-95. | DOI | MR

[10] Matthies, H., Strang, G.: The solution of nonlinear finite element equations. Internat. J. Numer. Methods Engrg. 14 (1979), 1613-1623. | DOI | MR | Zbl

[11] Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35 (1980), 773-782. | DOI | MR | Zbl

[12] Vlček, J., Lukšan, L.: Generalizations of the Limited-memory BFGS Method Based on Quasi-product Form of Update. Report V-1060, Institute of Computer Science AS CR, Prague 2009.