Keywords: unconstrained optimization; large scale optimization; limited memory methods; variable metric updates; recursive matrix formulation; algorithms
@article{KYB_2013_49_2_a2,
author = {Luk\v{s}an, Ladislav and Vl\v{c}ek, Jan},
title = {Recursive form of general limited memory variable metric methods},
journal = {Kybernetika},
pages = {224--235},
year = {2013},
volume = {49},
number = {2},
mrnumber = {3085394},
zbl = {1266.49060},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a2/}
}
Lukšan, Ladislav; Vlček, Jan. Recursive form of general limited memory variable metric methods. Kybernetika, Tome 49 (2013) no. 2, pp. 224-235. http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a2/
[1] Bongartz, I., Conn, A. R., Gould, N., Toint, P. L.: CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Software 21 (1995), 123-160. | DOI | Zbl
[2] Byrd, R. H., Nocedal, J., Schnabel, R. B.: Representation of quasi-Newton matrices and their use in limited memory methods. Math. Programming 63 (1994), 129-156. | DOI | MR
[3] Davidon, W. C.: Optimally conditioned optimization algorithms without line searches. Math. Programming 9 (1975), 1-30. | DOI | MR | Zbl
[4] Dolan, E. D., Moré, J. J.: Benchmarking optimization software with performance profiles. Math. Programming 91 (2002), 201-213. | DOI | MR | Zbl
[5] Hoshino, S.: A formulation of variable metric methods. J. Institute of Mathematics and its Applications 10 (1972), 394-403. | DOI | MR | Zbl
[6] Lukšan, L.: Quasi-Newton methods without projections for unconstrained minimization. Kybernetika 18 (1982), 290-306. | MR | Zbl
[7] Lukšan, L., Matonoha, C., Vlček, J.: Sparse Test Problems for Unconstrained Optimization. Report V-1064, Institute of Computer Science AS CR, Prague 2010.
[8] Lukšan, L., Matonoha, C., Vlček, J.: Modified CUTE Problems for Sparse Unconstrained Optimization. Report V-1081, Institute of Computer Science AS CR, Prague 2010.
[9] Spedicato, L. Lukšan amd E.: Variable metric methods for unconstrained optimization and nonlinear least squares. J. Comput. Appl. Math. 124 (2000), 61-95. | DOI | MR
[10] Matthies, H., Strang, G.: The solution of nonlinear finite element equations. Internat. J. Numer. Methods Engrg. 14 (1979), 1613-1623. | DOI | MR | Zbl
[11] Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35 (1980), 773-782. | DOI | MR | Zbl
[12] Vlček, J., Lukšan, L.: Generalizations of the Limited-memory BFGS Method Based on Quasi-product Form of Update. Report V-1060, Institute of Computer Science AS CR, Prague 2009.