Complexity of testing morphic primitivity
Kybernetika, Tome 49 (2013) no. 2, pp. 216-223
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We analyze an algorithm that decides whether a given word is a fixed point of a nontrivial morphism. We show that it can be implemented to have complexity in $\mathcal O(m\cdot n)$, where $n$ is the length of the word and $m$ the size of the alphabet.
We analyze an algorithm that decides whether a given word is a fixed point of a nontrivial morphism. We show that it can be implemented to have complexity in $\mathcal O(m\cdot n)$, where $n$ is the length of the word and $m$ the size of the alphabet.
@article{KYB_2013_49_2_a1,
author = {Holub, \v{S}t\v{e}p\'an and Matocha, Vojt\v{e}ch},
title = {Complexity of testing morphic primitivity},
journal = {Kybernetika},
pages = {216--223},
year = {2013},
volume = {49},
number = {2},
mrnumber = {3085393},
zbl = {1266.68150},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a1/}
}
Holub, Štěpán; Matocha, Vojtěch. Complexity of testing morphic primitivity. Kybernetika, Tome 49 (2013) no. 2, pp. 216-223. http://geodesic.mathdoc.fr/item/KYB_2013_49_2_a1/