Keywords: fuzzy metric space; t-norm; isometry; analysis
@article{KYB_2013_49_1_a9,
author = {Qiu, Dong and Zhang, Weiquan},
title = {The strongest t-norm for fuzzy metric spaces},
journal = {Kybernetika},
pages = {141--148},
year = {2013},
volume = {49},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a9/}
}
Qiu, Dong; Zhang, Weiquan. The strongest t-norm for fuzzy metric spaces. Kybernetika, Tome 49 (2013) no. 1, pp. 141-148. http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a9/
[1] Dombi, J.: A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Set and Systems 8 (1982), 149-163. | DOI | MR | Zbl
[2] George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Set and Systems 64 (1994), 395-399. | DOI | MR | Zbl
[3] Gregori, V., Romaguera, S.: On completion of fuzzy metrics paces. Fuzzy Set and Systems 130 (2002), 399-404. | DOI | MR
[4] Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metrics and applications. Fuzzy Set and Systems 170 (2011), 95-111. | MR | Zbl
[5] Klement, E. P., Mesiar, R., Pap, E.: Triangular norms. Kluwer Academic, Dordrecht 2000. | MR | Zbl
[6] Kramosil, I., Michálek, J.: Fuzzy metric and statistical metric spaces. Kybernetika 11 (1975), 326-334. | MR
[7] Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. USA 28 (1942), 535-537. | DOI | MR | Zbl
[8] Sapena, A.: A contribution to the study of fuzzy metric spaces. Appl. Gen. Topology 2 (2001), 63-76. | MR | Zbl
[9] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 314-334. | MR | Zbl
[10] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North Holland, Amsterdam 1983. | MR | Zbl
[11] Thorp, E.: Best possible triangle inequalities for statistical metric spaces. Proc. Amer. Math. Soc. 11 (1960), 734-740. | DOI | MR | Zbl