The strongest t-norm for fuzzy metric spaces
Kybernetika, Tome 49 (2013) no. 1, pp. 141-148 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we prove that for a given positive continuous t-norm there is a fuzzy metric space in the sense of George and Veeramani, for which the given t-norm is the strongest one. For the opposite problem, we obtain that there is a fuzzy metric space for which there is no strongest t-norm. As an application of the main results, it is shown that there are infinite non-isometric fuzzy metrics on an infinite set.
In this paper, we prove that for a given positive continuous t-norm there is a fuzzy metric space in the sense of George and Veeramani, for which the given t-norm is the strongest one. For the opposite problem, we obtain that there is a fuzzy metric space for which there is no strongest t-norm. As an application of the main results, it is shown that there are infinite non-isometric fuzzy metrics on an infinite set.
Classification : 62A10, 93E12
Keywords: fuzzy metric space; t-norm; isometry; analysis
@article{KYB_2013_49_1_a9,
     author = {Qiu, Dong and Zhang, Weiquan},
     title = {The strongest t-norm for fuzzy metric spaces},
     journal = {Kybernetika},
     pages = {141--148},
     year = {2013},
     volume = {49},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a9/}
}
TY  - JOUR
AU  - Qiu, Dong
AU  - Zhang, Weiquan
TI  - The strongest t-norm for fuzzy metric spaces
JO  - Kybernetika
PY  - 2013
SP  - 141
EP  - 148
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a9/
LA  - en
ID  - KYB_2013_49_1_a9
ER  - 
%0 Journal Article
%A Qiu, Dong
%A Zhang, Weiquan
%T The strongest t-norm for fuzzy metric spaces
%J Kybernetika
%D 2013
%P 141-148
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a9/
%G en
%F KYB_2013_49_1_a9
Qiu, Dong; Zhang, Weiquan. The strongest t-norm for fuzzy metric spaces. Kybernetika, Tome 49 (2013) no. 1, pp. 141-148. http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a9/

[1] Dombi, J.: A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Set and Systems 8 (1982), 149-163. | DOI | MR | Zbl

[2] George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Set and Systems 64 (1994), 395-399. | DOI | MR | Zbl

[3] Gregori, V., Romaguera, S.: On completion of fuzzy metrics paces. Fuzzy Set and Systems 130 (2002), 399-404. | DOI | MR

[4] Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metrics and applications. Fuzzy Set and Systems 170 (2011), 95-111. | MR | Zbl

[5] Klement, E. P., Mesiar, R., Pap, E.: Triangular norms. Kluwer Academic, Dordrecht 2000. | MR | Zbl

[6] Kramosil, I., Michálek, J.: Fuzzy metric and statistical metric spaces. Kybernetika 11 (1975), 326-334. | MR

[7] Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. USA 28 (1942), 535-537. | DOI | MR | Zbl

[8] Sapena, A.: A contribution to the study of fuzzy metric spaces. Appl. Gen. Topology 2 (2001), 63-76. | MR | Zbl

[9] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 314-334. | MR | Zbl

[10] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North Holland, Amsterdam 1983. | MR | Zbl

[11] Thorp, E.: Best possible triangle inequalities for statistical metric spaces. Proc. Amer. Math. Soc. 11 (1960), 734-740. | DOI | MR | Zbl