Keywords: fuzzy set; fuzzy entropy; Atanassov's intuitionistic fuzzy set; intuitionistic fuzzy entropy; exponential entropy
@article{KYB_2013_49_1_a7,
author = {Verma, Rajkumar and Sharma, Bhu Dev},
title = {Exponential entropy on intuitionistic fuzzy sets},
journal = {Kybernetika},
pages = {114--127},
year = {2013},
volume = {49},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a7/}
}
Verma, Rajkumar; Sharma, Bhu Dev. Exponential entropy on intuitionistic fuzzy sets. Kybernetika, Tome 49 (2013) no. 1, pp. 114-127. http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a7/
[1] Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20 (1986), 1, 87-96. | MR | Zbl
[2] Atanassov, K.: New operations defined over intuitionistic fuzzy sets. Fuzzy Sets and Systems 61 (1994), 2, 137-142. | DOI | MR
[3] Burillo, P., Bustince, H.: Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets and Systems 78 (1996), 3, 305-316. | DOI | MR | Zbl
[4] Bustince, H., Burillo, P.: Vague sets are intuitionistic fuzzy sets. Fuzzy Sets and Systems 79 (1996), 3, 403-405. | DOI | MR | Zbl
[5] Luca, A. De, Termini, S.: A definition of non-probabilistic entropy in the setting of fuzzy set theory. Inform. Control 20 (1972), 4, 301-312. | DOI | MR
[6] De, S. K., Biswas, R., Roy, A. R.: Some operations on intuitionistic fuzzy sets. Fuzzy Sets and Systems 114 (2000), 3, 477-484. | MR | Zbl
[7] Kaufmann, A.: Introduction to the Theory of Fuzzy Subsets. Academic-Press, New York 1975. | MR | Zbl
[8] Li, F., Lu, Z. H., Cai, L. J.: The entropy of vague sets based on fuzzy sets. J. Huazhong Univ. Sci. Tech. 31 (2003), 1, 24-25. | MR
[9] Pal, N. R., Pal, S. K.: Object background segmentation using new definitions of entropy. IEEE Proc. 366 (1989), 284-295.
[10] Prakash, O., Sharma, P. K., Mahajan, R.: New measures of weighted fuzzy entropy and their applications for the study of maximum weighted fuzzy entropy principle. Inform. Sci. 178 (2008), 11, 2839-2395. | MR
[11] Shannon, C. E.: A mathematical theory of communication. Bell Syst. Tech. J. 27 (1948), 379-423, 623-656. | MR | Zbl
[12] Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems 118 (2001), 3, 467-477. | DOI | MR | Zbl
[13] Vlachos, I. K., Sergiagis, G. D.: Intuitionistic fuzzy information - Application to pattern recognition. Pattern Recognition Lett. 28 (2007), 2, 197-206. | DOI
[14] Wei, C. P., Gao, Z. H., Guo, T. T.: An intuitionistic fuzzy entropy measure based on the trigonometric function. Control and Decision 27 (2012), 4, 571-574. | MR
[15] Ye, J.: Two effective measures of intuitionistic fuzzy entropy. Computing 87 (2010), 1-2, 55-62. | MR | Zbl
[16] Zadeh, L. A.: Fuzzy sets. Inform. Control 8 (1965), 3, 338-353. | DOI | MR | Zbl
[17] Zadeh, L. A.: Probability measure of fuzzy events. J. Math. Anal. Appl. 23 (1968), 2, 421-427. | DOI | MR
[18] Zhang, Q. S., Jiang, S. Y.: A note on information entropy measure for vague sets. Inform. Sci. 178 (2008), 21, 4184-4191. | DOI | MR