Keywords: approximation model; consistency; asymptotic normality
@article{KYB_2013_49_1_a4,
author = {R\'evayov\'a, Martina and T\"or\"ok, Csaba},
title = {Reference points based recursive approximation},
journal = {Kybernetika},
pages = {60--72},
year = {2013},
volume = {49},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a4/}
}
Révayová, Martina; Török, Csaba. Reference points based recursive approximation. Kybernetika, Tome 49 (2013) no. 1, pp. 60-72. http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a4/
[1] Dikoussar, N. D.: Adaptive projective filters for track finding. Comput. Phys. Commun. 79 (1994), 39-51. | DOI
[2] Dikoussar, N. D.: Kusochno-kubicheskoje priblizhenije I sglazhivanije krivich v rezhime adaptacii. Comm. JINR, P10-99-168, Dubna 1999.
[3] Dikoussar, N. D., Török, Cs.: Automatic knot finding for piecewise-cubic approximation. Mat. Model. T-17 (2006), 3. | MR | Zbl
[4] Dikoussar, N. D., Török, Cs.: Approximation with DPT. Comput. Math. Appl. 38 (1999), 211-220. | MR
[5] Haykin, S.: Adaptive Filter Theory. Prentice Hall, 2002 | Zbl
[6] Nadaraya, E. A.: On estimating regression. Theory Probab. Appl. 9 (1964 ), 141-142. | Zbl
[7] Reinsch, Ch. H.: Smoothing by spline functions. Numer. Math. 10 (1967), 177-183. | DOI | MR | Zbl
[8] Révayová, M., Török, Cs.: Piecewise approximation and neural networks. Kybernetika 43 (2007), 4, 547-559. | MR | Zbl
[9] Ripley, B. D.: Pattern Recognision and Neural Networks. Cambridge University Press, 1996. | MR
[10] Török, Cs.: 4-point transforms and approximation. Comput. Phys. Commun. 125 (2000), 154-166. | DOI | Zbl
[11] Wasan, M. T.: Stochastic Approximation. Cambridge University Press, 2004. | MR | Zbl