Goodness-of-fit test for the accelerated failure time model based on martingale residuals
Kybernetika, Tome 49 (2013) no. 1, pp. 40-59 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The Accelerated Failure Time model presents a way to easily describe survival regression data. It is assumed that each observed unit ages internally faster or slower, depending on the covariate values. To use the model properly, we want to check if observed data fit the model assumptions. In present work we introduce a goodness-of-fit testing procedure based on modern martingale theory. On simulated data we study empirical properties of the test for various situations.
The Accelerated Failure Time model presents a way to easily describe survival regression data. It is assumed that each observed unit ages internally faster or slower, depending on the covariate values. To use the model properly, we want to check if observed data fit the model assumptions. In present work we introduce a goodness-of-fit testing procedure based on modern martingale theory. On simulated data we study empirical properties of the test for various situations.
Classification : 62N01, 62N03
Keywords: accelerated failure time model; survival analysis; goodness-of-fit
@article{KYB_2013_49_1_a3,
     author = {Nov\'ak, Petr},
     title = {Goodness-of-fit test for the accelerated failure time model based on martingale residuals},
     journal = {Kybernetika},
     pages = {40--59},
     year = {2013},
     volume = {49},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a3/}
}
TY  - JOUR
AU  - Novák, Petr
TI  - Goodness-of-fit test for the accelerated failure time model based on martingale residuals
JO  - Kybernetika
PY  - 2013
SP  - 40
EP  - 59
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a3/
LA  - en
ID  - KYB_2013_49_1_a3
ER  - 
%0 Journal Article
%A Novák, Petr
%T Goodness-of-fit test for the accelerated failure time model based on martingale residuals
%J Kybernetika
%D 2013
%P 40-59
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a3/
%G en
%F KYB_2013_49_1_a3
Novák, Petr. Goodness-of-fit test for the accelerated failure time model based on martingale residuals. Kybernetika, Tome 49 (2013) no. 1, pp. 40-59. http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a3/

[1] Bagdonavičius, V., Nikulin, M.: Accelerated Life Models. Chapman and Hall / CRC, Boca Raton 2002. | Zbl

[2] Buckley, J., James, I. R.: Linear regression with censored data. Biometrika 66 (1979), 429-436. | DOI | Zbl

[3] Cox, D. R.: Regression models and life tables. J. Roy. Statist. Soc. Ser. B 34 (1972), 187-220. | MR | Zbl

[4] Cox, D. R., D.Oakes: Analysis of Survival Data. Chapman and Hall / CRC, Boca Raton1984. | MR | Zbl

[5] Fleming, T. R., Harrington, D. P.: Counting Processes and Survival Analysis. Wiley, New York 1991. | MR | Zbl

[6] Lin, D. Y., Spiekerman, C. F.: Model checking techniques for parametric regression with censored data. Scand. J. Statist. 23 (1996), 157-177. | MR | Zbl

[7] Lin, D. Y., Wei, L. J., Ying, Z.: Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika 80 (1993), 557-572. | DOI | MR | Zbl

[8] Lin, D. Y., Wei, L. J., Ying, Z.: Accelerated failure time models for counting processes. Biometrika 85 (1998), 605-618. | DOI | MR | Zbl

[9] Lin, D. Y., Ying, Z.: Semiparametric inference for the accelerated life model with time-dependent covariates. J. Statist. Plann. Inference 44 (1995), 47-63. | DOI | MR | Zbl

[10] Pollard, D.: Empirical Processes: Theory and Applications. Hayward, California: IMS 1990. | MR | Zbl

[11] Shorack, G. R., Wellner, J. A.: Empirical Processes with Applications to Statistics. Wiley, New York 1986. | MR | Zbl

[12] Silverman, B. W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London 1986. | MR | Zbl