Keywords: accelerated failure time model; survival analysis; goodness-of-fit
@article{KYB_2013_49_1_a3,
author = {Nov\'ak, Petr},
title = {Goodness-of-fit test for the accelerated failure time model based on martingale residuals},
journal = {Kybernetika},
pages = {40--59},
year = {2013},
volume = {49},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a3/}
}
Novák, Petr. Goodness-of-fit test for the accelerated failure time model based on martingale residuals. Kybernetika, Tome 49 (2013) no. 1, pp. 40-59. http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a3/
[1] Bagdonavičius, V., Nikulin, M.: Accelerated Life Models. Chapman and Hall / CRC, Boca Raton 2002. | Zbl
[2] Buckley, J., James, I. R.: Linear regression with censored data. Biometrika 66 (1979), 429-436. | DOI | Zbl
[3] Cox, D. R.: Regression models and life tables. J. Roy. Statist. Soc. Ser. B 34 (1972), 187-220. | MR | Zbl
[4] Cox, D. R., D.Oakes: Analysis of Survival Data. Chapman and Hall / CRC, Boca Raton1984. | MR | Zbl
[5] Fleming, T. R., Harrington, D. P.: Counting Processes and Survival Analysis. Wiley, New York 1991. | MR | Zbl
[6] Lin, D. Y., Spiekerman, C. F.: Model checking techniques for parametric regression with censored data. Scand. J. Statist. 23 (1996), 157-177. | MR | Zbl
[7] Lin, D. Y., Wei, L. J., Ying, Z.: Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika 80 (1993), 557-572. | DOI | MR | Zbl
[8] Lin, D. Y., Wei, L. J., Ying, Z.: Accelerated failure time models for counting processes. Biometrika 85 (1998), 605-618. | DOI | MR | Zbl
[9] Lin, D. Y., Ying, Z.: Semiparametric inference for the accelerated life model with time-dependent covariates. J. Statist. Plann. Inference 44 (1995), 47-63. | DOI | MR | Zbl
[10] Pollard, D.: Empirical Processes: Theory and Applications. Hayward, California: IMS 1990. | MR | Zbl
[11] Shorack, G. R., Wellner, J. A.: Empirical Processes with Applications to Statistics. Wiley, New York 1986. | MR | Zbl
[12] Silverman, B. W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London 1986. | MR | Zbl