Keywords: mixture model; non-negative tensor rank; perfect code; marginal polytope
@article{KYB_2013_49_1_a2,
author = {Mont\'ufar, Guido},
title = {Mixture decompositions of exponential families using a decomposition of their sample spaces},
journal = {Kybernetika},
pages = {23--39},
year = {2013},
volume = {49},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a2/}
}
Montúfar, Guido. Mixture decompositions of exponential families using a decomposition of their sample spaces. Kybernetika, Tome 49 (2013) no. 1, pp. 23-39. http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a2/
[1] Amari, S.: Information geometry on hierarchical decomposition of stochastic interactions. IEEE Trans. Inform. Theory 47 (1999), 1701-1711.
[2] Amari, S., Nagaoka, H.: Methods of information geometry, Vol. 191. Oxford University Press, 2000. Translations of mathematical monographs. | MR
[3] Ay, N., Knauf, A.: Maximizing multi-information. Kybernetika 42 (2006), 517-538. | MR | Zbl
[4] Ay, N., Montúfar, G. F., Rauh, J.: Selection criteria for neuromanifolds of stochastic dynamics. In: Advances in Cognitive Neurodynamics (III). Springer, 2011.
[5] Bishop, C. M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, New York 2006. | MR
[6] Bocci, C., Chiantini, L.: On the identifiability of binary segre products. J. Algebraic Geom. 5 (2011).
[7] Brown, L.: Fundamentals of Statistical Exponential Families: With Applications in Statistical Decision Theory. Institute of Mathematical Statistics, Hayworth 1986. | MR | Zbl
[8] Catalisano, M. V., Geramita, A. V., Gimigliano, A.: Secant varieties of $\P^1\times\dots\times\P^1$ ($n$-times) are not defective for $n\geq5$. J. Algebraic Geom. 20 (2011), 295-327. | DOI | MR
[9] Diaconis, P.: Finite forms of de Finetti's theorem on exchangeability. Synthese 36 (1977), 271-281. | DOI | MR | Zbl
[10] Efron, B.: The geometry of exponential families. Ann. Statist. 6 (1978), 2, 362-376. | DOI | MR | Zbl
[11] Cohen, S. L. G., Honkala, I., Lobstein, A.: Covering Codes. Elsevier, 1997. | Zbl
[12] Gale, D.: Neighborly and cyclic polytopes. In: Convexity: Proc. Seventh Symposium in Pure Mathematics of the American Mathematical Society 1961, pp. 225-233. | MR | Zbl
[13] Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes. In: Polytopes - Combinatorics and Computation (G. Kalai and G. M. Ziegler, eds.), Birkhäuser 2000, pp. 43-74. | MR | Zbl
[14] Geiger, D., Meek, C., Sturmfels, B.: On the toric algebra of graphical models. Ann. Statist. 34 (2006), 1463-1492. | DOI | MR | Zbl
[15] Gilbert, E.: A comparison of signalling alphabets. Bell System Techn. J. 31 (1052), 504-522.
[16] Gilula, Z.: Singular value decomposition of probability matrices: Probabilistic aspects of latent dichotomous variables. Biometrika 66 (1979), 2, 339-344. | DOI | MR | Zbl
[17] Grünbaum, B.: Convex Polytopes. Second edition. Springer-Verlag, New York 2003. | MR
[18] Henk, M., Richter-Gebert, J., Ziegler, G. M.: Basic Properties of Convex Polytopes. CRC Press, Boca Raton 1997. | MR | Zbl
[19] Hoşten, S., Sullivant, S.: Gröbner bases and polyhedral geometry of reducible and cyclic models. J. Combin. Theory Ser. A 100 (2002), 2, 277-301. | DOI | MR | Zbl
[20] Kahle, T.: Neighborliness of marginal polytopes. Contrib. Algebra Geometry 51 (2010), 45-56. | MR | Zbl
[21] Kahle, T., Ay, N.: Support sets of distributions with given interaction structure. In: Proc. WUPES'06, 2006.
[22] Kahle, T., Wenzel, W., Ay, N.: Hierarchical models, marginal polytopes, and linear codes. Kybernetika 45 (2009), 189-208. | MR | Zbl
[23] Kalai, G.: Some aspects of the combinatorial theory of convex polytopes. 1993. | MR | Zbl
[24] Kingman, J. F. C.: Uses of exchangeability. Ann. Probab. 6 (1978), 2, 183-197. | DOI | MR | Zbl
[25] Lindsay, B. G.: Mixture models: theory, geometry, and applications. NSF-CBMS Regional Conference Series in Probability and Statistics. Institute of Mathematical Statistics, 1995. | Zbl
[26] McLachlan, G., Peel, D.: Finite Mixture Models. Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley, 2000. | MR | Zbl
[27] Montúfar, G. F., Ay, N.: Refinements of universal approximation results for deep belief networks and restricted Boltzmann machines. Neural Comput. 23 (2011), 5, 1306-1319. | DOI | MR
[28] Montúfar, G. F., Rauh, J., Ay, N.: Expressive power and approximation errors of restricted Boltzmann machines. In: Advances in Neural Information Processing Systems 24 (J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, eds.), MIT Press, 2011, pp. 415-423.
[29] Rauh, J.: Finding the Maximizers of the Information Divergence from an Exponential Family. Ph. D. Thesis, Universität Leipzig, 2011. | MR
[30] Rauh, J., Kahle, T., Ay, N.: Support sets of exponential families and oriented matroids. Internat. J. Approximate Reasoning 52 (2011), 5, 613-626. | DOI | MR
[31] Settimi, R., Smith, J. Q.: On the geometry of Bayesian graphical models with hidden variables. In: Proc. Fourteenth conference on Uncertainty in artificial intelligence, UAI'98, Morgan Kaufmann Publishers 1998, pp. 472-479.
[32] Shemer., I.: Neighborly polytopes. Israel J. Math. 43 (1982), 291-311. | DOI | MR | Zbl
[33] Titterington, D., Smith, A. F. M., Makov, U. E.: Statistical Analysis of Finite Mixture Distributions. John Wiley and Sons, 1985. | MR | Zbl
[34] Varshamov, R.: Estimate of the number of signals in error correcting codes. Dokl. Akad. Nauk SSSR 117 (1957), 739-741.