Mixture decompositions of exponential families using a decomposition of their sample spaces
Kybernetika, Tome 49 (2013) no. 1, pp. 23-39 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the problem of finding the smallest $m$ such that every element of an exponential family can be written as a mixture of $m$ elements of another exponential family. We propose an approach based on coverings and packings of the face lattice of the corresponding convex support polytopes and results from coding theory. We show that $m=q^{N-1}$ is the smallest number for which any distribution of $N$ $q$-ary variables can be written as mixture of $m$ independent $q$-ary variables. Furthermore, we show that any distribution of $N$ binary variables is a mixture of $m = 2^{N-(k+1)}(1+ 1/(2^k-1))$ elements of the $k$-interaction exponential family.
We study the problem of finding the smallest $m$ such that every element of an exponential family can be written as a mixture of $m$ elements of another exponential family. We propose an approach based on coverings and packings of the face lattice of the corresponding convex support polytopes and results from coding theory. We show that $m=q^{N-1}$ is the smallest number for which any distribution of $N$ $q$-ary variables can be written as mixture of $m$ independent $q$-ary variables. Furthermore, we show that any distribution of $N$ binary variables is a mixture of $m = 2^{N-(k+1)}(1+ 1/(2^k-1))$ elements of the $k$-interaction exponential family.
Classification : 52B05, 60C05, 62E17
Keywords: mixture model; non-negative tensor rank; perfect code; marginal polytope
@article{KYB_2013_49_1_a2,
     author = {Mont\'ufar, Guido},
     title = {Mixture decompositions of exponential families using a decomposition of their sample spaces},
     journal = {Kybernetika},
     pages = {23--39},
     year = {2013},
     volume = {49},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a2/}
}
TY  - JOUR
AU  - Montúfar, Guido
TI  - Mixture decompositions of exponential families using a decomposition of their sample spaces
JO  - Kybernetika
PY  - 2013
SP  - 23
EP  - 39
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a2/
LA  - en
ID  - KYB_2013_49_1_a2
ER  - 
%0 Journal Article
%A Montúfar, Guido
%T Mixture decompositions of exponential families using a decomposition of their sample spaces
%J Kybernetika
%D 2013
%P 23-39
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a2/
%G en
%F KYB_2013_49_1_a2
Montúfar, Guido. Mixture decompositions of exponential families using a decomposition of their sample spaces. Kybernetika, Tome 49 (2013) no. 1, pp. 23-39. http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a2/

[1] Amari, S.: Information geometry on hierarchical decomposition of stochastic interactions. IEEE Trans. Inform. Theory 47 (1999), 1701-1711.

[2] Amari, S., Nagaoka, H.: Methods of information geometry, Vol. 191. Oxford University Press, 2000. Translations of mathematical monographs. | MR

[3] Ay, N., Knauf, A.: Maximizing multi-information. Kybernetika 42 (2006), 517-538. | MR | Zbl

[4] Ay, N., Montúfar, G. F., Rauh, J.: Selection criteria for neuromanifolds of stochastic dynamics. In: Advances in Cognitive Neurodynamics (III). Springer, 2011.

[5] Bishop, C. M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, New York 2006. | MR

[6] Bocci, C., Chiantini, L.: On the identifiability of binary segre products. J. Algebraic Geom. 5 (2011).

[7] Brown, L.: Fundamentals of Statistical Exponential Families: With Applications in Statistical Decision Theory. Institute of Mathematical Statistics, Hayworth 1986. | MR | Zbl

[8] Catalisano, M. V., Geramita, A. V., Gimigliano, A.: Secant varieties of $\P^1\times\dots\times\P^1$ ($n$-times) are not defective for $n\geq5$. J. Algebraic Geom. 20 (2011), 295-327. | DOI | MR

[9] Diaconis, P.: Finite forms of de Finetti's theorem on exchangeability. Synthese 36 (1977), 271-281. | DOI | MR | Zbl

[10] Efron, B.: The geometry of exponential families. Ann. Statist. 6 (1978), 2, 362-376. | DOI | MR | Zbl

[11] Cohen, S. L. G., Honkala, I., Lobstein, A.: Covering Codes. Elsevier, 1997. | Zbl

[12] Gale, D.: Neighborly and cyclic polytopes. In: Convexity: Proc. Seventh Symposium in Pure Mathematics of the American Mathematical Society 1961, pp. 225-233. | MR | Zbl

[13] Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes. In: Polytopes - Combinatorics and Computation (G. Kalai and G. M. Ziegler, eds.), Birkhäuser 2000, pp. 43-74. | MR | Zbl

[14] Geiger, D., Meek, C., Sturmfels, B.: On the toric algebra of graphical models. Ann. Statist. 34 (2006), 1463-1492. | DOI | MR | Zbl

[15] Gilbert, E.: A comparison of signalling alphabets. Bell System Techn. J. 31 (1052), 504-522.

[16] Gilula, Z.: Singular value decomposition of probability matrices: Probabilistic aspects of latent dichotomous variables. Biometrika 66 (1979), 2, 339-344. | DOI | MR | Zbl

[17] Grünbaum, B.: Convex Polytopes. Second edition. Springer-Verlag, New York 2003. | MR

[18] Henk, M., Richter-Gebert, J., Ziegler, G. M.: Basic Properties of Convex Polytopes. CRC Press, Boca Raton 1997. | MR | Zbl

[19] Hoşten, S., Sullivant, S.: Gröbner bases and polyhedral geometry of reducible and cyclic models. J. Combin. Theory Ser. A 100 (2002), 2, 277-301. | DOI | MR | Zbl

[20] Kahle, T.: Neighborliness of marginal polytopes. Contrib. Algebra Geometry 51 (2010), 45-56. | MR | Zbl

[21] Kahle, T., Ay, N.: Support sets of distributions with given interaction structure. In: Proc. WUPES'06, 2006.

[22] Kahle, T., Wenzel, W., Ay, N.: Hierarchical models, marginal polytopes, and linear codes. Kybernetika 45 (2009), 189-208. | MR | Zbl

[23] Kalai, G.: Some aspects of the combinatorial theory of convex polytopes. 1993. | MR | Zbl

[24] Kingman, J. F. C.: Uses of exchangeability. Ann. Probab. 6 (1978), 2, 183-197. | DOI | MR | Zbl

[25] Lindsay, B. G.: Mixture models: theory, geometry, and applications. NSF-CBMS Regional Conference Series in Probability and Statistics. Institute of Mathematical Statistics, 1995. | Zbl

[26] McLachlan, G., Peel, D.: Finite Mixture Models. Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley, 2000. | MR | Zbl

[27] Montúfar, G. F., Ay, N.: Refinements of universal approximation results for deep belief networks and restricted Boltzmann machines. Neural Comput. 23 (2011), 5, 1306-1319. | DOI | MR

[28] Montúfar, G. F., Rauh, J., Ay, N.: Expressive power and approximation errors of restricted Boltzmann machines. In: Advances in Neural Information Processing Systems 24 (J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, eds.), MIT Press, 2011, pp. 415-423.

[29] Rauh, J.: Finding the Maximizers of the Information Divergence from an Exponential Family. Ph. D. Thesis, Universität Leipzig, 2011. | MR

[30] Rauh, J., Kahle, T., Ay, N.: Support sets of exponential families and oriented matroids. Internat. J. Approximate Reasoning 52 (2011), 5, 613-626. | DOI | MR

[31] Settimi, R., Smith, J. Q.: On the geometry of Bayesian graphical models with hidden variables. In: Proc. Fourteenth conference on Uncertainty in artificial intelligence, UAI'98, Morgan Kaufmann Publishers 1998, pp. 472-479.

[32] Shemer., I.: Neighborly polytopes. Israel J. Math. 43 (1982), 291-311. | DOI | MR | Zbl

[33] Titterington, D., Smith, A. F. M., Makov, U. E.: Statistical Analysis of Finite Mixture Distributions. John Wiley and Sons, 1985. | MR | Zbl

[34] Varshamov, R.: Estimate of the number of signals in error correcting codes. Dokl. Akad. Nauk SSSR 117 (1957), 739-741.