Keywords: two-stage stochastic linear programming; recourse problem; normal solution; augmented Lagrangian method
@article{KYB_2013_49_1_a13,
author = {Ketabchi, Saeed and Behboodi-Kahoo, Malihe},
title = {Augmented {Lagrangian} method for recourse problem of two-stage stochastic linear programming},
journal = {Kybernetika},
pages = {188--198},
year = {2013},
volume = {49},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a13/}
}
TY - JOUR AU - Ketabchi, Saeed AU - Behboodi-Kahoo, Malihe TI - Augmented Lagrangian method for recourse problem of two-stage stochastic linear programming JO - Kybernetika PY - 2013 SP - 188 EP - 198 VL - 49 IS - 1 UR - http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a13/ LA - en ID - KYB_2013_49_1_a13 ER -
Ketabchi, Saeed; Behboodi-Kahoo, Malihe. Augmented Lagrangian method for recourse problem of two-stage stochastic linear programming. Kybernetika, Tome 49 (2013) no. 1, pp. 188-198. http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a13/
[1] Armijoo, L.: Minimazation of functions havinig Lipschitz-continus first partial derivetives. Pacific J. Math. 16 (1966), 1-3. | DOI | MR
[2] Benders, J. F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4 (1962), 238-252. | DOI | MR | Zbl
[3] Birge, J. R., Chen, X., Qi, L.: Newton Method for Stochastic Quadratic Programs with Recourse. AMR, School of Mathematics, UNSW, Sydney 1994.
[4] Birge, J. R., Louveaux, F.: Introduction to stochastic programming. Springer Series in Operation Research, Springer-Verlag, New York 1997. | MR | Zbl
[5] Branda, M.: Chance constrained problems: penalty reformulation and performance of sample approximation technique. Kybernetika 48 (2012), 105-122. | MR | Zbl
[6] Chen, X.: A parallel BFGS-SQP method for stochastic linear programs. In: Computational Techniques and Applications, World Scientific 1995, pp. 67-74. | MR | Zbl
[7] Chen, X.: Newton-type methods for stochastic programming. Math. Comput. Model. 31 (2000), 89-98. | DOI | MR | Zbl
[8] Chen, X., Qi, L., Womersley, R. S.: Newton's method for quadratic stochastic programs with recourse. J. Comp. Appl. Math. 60 (1995), 29-46. | DOI | MR | Zbl
[9] Chen, X., Womersley, R. S.: A parallel inexact Newton method for stochastic programs with recourse. Ann. Oper. Res. 64 (1995), 113-141. | DOI | MR | Zbl
[10] Chen, X., Womersley, R. S.: Newton's method for quadratic stochastic programs with recourse. J. Comput. Appl. Math. 60 (1995), 29-46. | DOI | MR | Zbl
[11] Chen, X., Womersley, R. S.: Random test problems and parallel methods for quadratic programs and quadratic stochastic programs. Optim. Method. Softw. 13 (2000), 275-306. | DOI | MR | Zbl
[12] Dantzig, G. B.: Linear programming under uncertainty. Management Sci. 1 (1995), 197-206. | DOI | MR | Zbl
[13] Dantzig, G. B., Glynn, P. W.: Parallel processors for planning under uncertainty. Ann. Oper. Res. 22 (1990), 1-21. | DOI | MR | Zbl
[14] Dantzig, G. B., Wolfe, P.: Decomposition principle for linear programs. Oper. Res. 8 (1960), 101-111. | DOI | Zbl
[15] Evtushenko, Yu. G., Golikov, A. I., Mollaverdi, N.: Augmented lagrangian method for large-scale linear programming problem. Optim. Method. Softw. 20 (2005), 515-524. | DOI | MR
[16] Higle, J. L., Sen, S.: Stochastic decomposition: an algorithm for two stage linear programs with recourse. Math. Oper. Res. 16 (1991), 650-669. | DOI | MR | Zbl
[17] Hiriart-Urruty, J.-B., Strodiot, J. J., Nguyen, V. H.: Generalized Hessian matrics and second-order optimality condisions for problems CL1 data. Appl. Math. Optim. 11 (1984), 43-56. | DOI | MR
[18] Infanger, G.: Monte carlo(Importance) sampling within a benders decomposition algorithm for stochastic linear programs. Ann. Oper. Res. 39 (1992), 69-95. | DOI | MR | Zbl
[19] Joe, S., Sloan, I. H.: Imbedded lattice rules for multidimensional integration. SIAM J. Numer. Anal. 29 (1992), 1119-1135. | DOI | MR | Zbl
[20] Kall, P., Wallace, S. W.: Stochastic Programming. John Wiley and Sons, 1994. | MR | Zbl
[21] Kanzow, C., Qi, H., Qi, L.: On the minimum norm solution of linear programs. J. Optim. Theory Appl. 116 (2003), 333-345. | DOI | MR | Zbl
[22] Ketabchi, S., Ansari-Piri, E.: On the solution set of convex problems and its numerical application. J. Comput. Appl. Math. 206 (2007), 288-292. | DOI | MR | Zbl
[23] Mangasarian, O. L.: Normal solutions of linear programs. Math. Program. Stud. 22 (1984), 206-216. | DOI | MR | Zbl
[24] Mangasarian, O. L.: A Newton method for linear programming. J. Optim. Theory Appl. 121 (2004), 1-18. | DOI | MR | Zbl
[25] Prekopa, A.: Probabilistic programming. In: Stochastic programming (A. Ruszczynski and A. Shapiro, eds.), Handbook in Operations Research and Management Science 10 (2003), pp. 267-352, Elsevier, Amsterdam. | MR | Zbl
[26] Rockafellar, R. T.: Convex Analysis. Princeton University Press, Princeton 1970. | MR | Zbl
[27] Tarim, S. A., Miguel, I.: A hybrid Bender's decomposition method for solving stochastic constraint programs with linear recourse. Lect. Notes Comput. Sci. 3978 (2006), 133-148. | DOI
[28] Slyke, R. M. Van, Wets, R.: $L-$shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17 (1969), 638-663. | DOI | MR