Keywords: type-2 fuzzy sets; $\alpha $-plane; intersection of type-2 fuzzy sets; union of type-2 fuzzy sets; fuzzy sets
@article{KYB_2013_49_1_a10,
author = {Tak\'a\v{c}, Zdenko},
title = {On some properties of $\alpha $-planes of type-2 fuzzy sets},
journal = {Kybernetika},
pages = {149--163},
year = {2013},
volume = {49},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a10/}
}
Takáč, Zdenko. On some properties of $\alpha $-planes of type-2 fuzzy sets. Kybernetika, Tome 49 (2013) no. 1, pp. 149-163. http://geodesic.mathdoc.fr/item/KYB_2013_49_1_a10/
[1] Karnik, N., Mendel, J.: Operations on type-2 fuzzy sets. Fuzzy Sets and Systems 122 (2001), 327-348. | DOI | MR | Zbl
[2] Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Application. Upper-Saddle River, Prentice-Hall, NJ 1995. | MR
[3] Kolesárová, A., Kováčová, A.: Fuzzy množiny a ich aplikácie. STU, Bratislava 2004.
[4] Liu, F.: An Efficient Centroid Type Reduction Strategy for General Type-2 Fuzzy Logic System. IEEE Comput. Intell. Soc., Walter J. Karplus Summer Research Grant Report 2006.
[5] Liu, F.: An efficient centroid type reduction strategy for general type-2 fuzzy logic system. Inform. Sci. 178 (2008), 2224-2236. | DOI | MR
[6] Mendel, J. M.: Comments on '$\alpha$-plane representation for type-2 fuzzy sets: Theory and applications'. IEEE Trans. Fuzzy Syst. 18 (2010), 229-230. | DOI
[7] Mendel, J. M., John, R. I.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10 (2002), 117-127. | DOI
[8] Mendel, J. M., Liu, F., Zhai, D.: $\alpha$-plane representation for type-2 fuzzy sets: Theory and applications. IEEE Trans. Fuzzy Syst. 17 (2009), 1189-1207. | DOI
[9] Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type 2. Inform. Control 31 (1976), 312-340. | DOI | MR | Zbl
[10] Starczewski, J.: Extended triangular norms on gaussian fuzzy sets. In: Proc. EUSFLAT-LFA 2005 (E. Montseny and P. Sobrevilla, eds.), 2005, pp. 872-877.
[11] Takáč, Z.: Intersection and union of type-2 fuzzy sets and connection to ($\alpha_1,\alpha_2$)-double cuts. In: Proc. EUSFLAT-LFA 2011 (S. Galichet, J. Montero and G. Mauris, eds.), 2011, pp. 1052-1059. | Zbl
[12] Wagner, C., Hagras, H.: zSlices-towards bridging the gap between interval and general type-2 fuzzy logic. In: Proc. IEEE FUZZ Conf, Hong Kong 2008, pp. 489-497.
[13] Zadeh, L. A.: The concept of a linguistic variable and its application to approximate reasoning - I. Inform. Sci. 8 (1975), 199-249. | DOI | MR | Zbl