Keywords: impulsive evolution equations; stabilization; stable manifolds; singularly perturbed problems
@article{KYB_2012_48_6_a8,
author = {Wang, JinRong and Zhou, Yong and Wei, Wei},
title = {Novel {Method} for {Generalized} {Stability} {Analysis} of {Nonlinear} {Impulsive} {Evolution} {Equations}},
journal = {Kybernetika},
pages = {1211--1228},
year = {2012},
volume = {48},
number = {6},
mrnumber = {3052882},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a8/}
}
TY - JOUR AU - Wang, JinRong AU - Zhou, Yong AU - Wei, Wei TI - Novel Method for Generalized Stability Analysis of Nonlinear Impulsive Evolution Equations JO - Kybernetika PY - 2012 SP - 1211 EP - 1228 VL - 48 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a8/ LA - en ID - KYB_2012_48_6_a8 ER -
Wang, JinRong; Zhou, Yong; Wei, Wei. Novel Method for Generalized Stability Analysis of Nonlinear Impulsive Evolution Equations. Kybernetika, Tome 48 (2012) no. 6, pp. 1211-1228. http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a8/
[1] Abada, N., Benchohra, M., Hammouche, H.: Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions. J. Differential Equations 246 (2009), 3834-3863. | DOI | MR | Zbl
[2] Ahmed, N. U.: Existence of optimal controls for a general class of impulsive systems on Banach space. SIAM J. Control Optim. 42 (2003), 669-685. | DOI | MR
[3] Ahmed, N. U., Teo, K. L., Hou, S. H.: Nonlinear impulsive systems on infinite dimensional spaces. Nonlinear Anal. 54 (2003), 907-925. | DOI | MR | Zbl
[4] Benchohra, M., Henderson, J., Ntouyas, S. K.: Impulsive differential equations and inclusions. In: Contemporary Mathematics and Its Applications, Vol. 2, Hindawi Publishing Corporation, New York 2006. | MR | Zbl
[5] Bounit, H., Hammouri, H.: Stabilization of infinite-dimensional semilinear systems with dissipative drift. Appl. Math. Optim. 37 (1998), 225-242. | DOI | MR | Zbl
[6] Chang, Y. K., Nieto, J. J.: Existence of solutions for impulsive neutral integro-differential inclusions with nonlocal initial conditions via fractional operators. Numer. Funct. Anal. Optim. 30 (2009), 227-244. | DOI | MR | Zbl
[7] Dvirnyĭ, A. I., Slyn'ko, V. I.: Stability of solutions to impulsive differential equations in critical cases. Sibirsk. Mat. Zh. 52 (2011), 70-80. | MR
[8] Fan, Z., Li, G.: Existence results for semilinear differential equations with nonlocal and impulsive conditions. J. Funct. Anal. 258 (2010), 1709-1727. | DOI | MR | Zbl
[9] Hernández, E., Rabello, M., Henríquez, H. R.: Existence of solutions for impulsive partial neutral functional differential equations. J. Math. Anal. Appl. 331 (2007), 1135-1158. | DOI | MR
[10] Koliha, J. J., Straškraba, I.: Stability in nonlinear evolution problems by means of fixed point theorem. Comment. Math. Univ. Carolin. 38 (1997), 37-59. | MR
[11] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations. World Scientific, Singapore - London 1989. | MR | Zbl
[12] Liang, J., Liu, J. H., Xiao, T.-J.: Nonlocal impulsive problems for nonlinear differential equations in Banach spaces. Math. Comput. Model. 49 (2009), 798-804. | DOI | MR | Zbl
[13] Liu, J.: Nonlinear impulsive evolution equations. Dynamic Contin. Discrete Impuls. Syst. 6 (1999), 77-85. | MR | Zbl
[14] Lü, J., Chen, G.: Generating multiscroll Chaotic attractors: Theories, Methods and Applications. Internat. J. Bifurcation and Chaos 16 (2006), 775-858. | DOI | MR
[15] Lü, J., Han, F., Yu, X., Chen, G.: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method. Automatica 40 (2004), 1677-1687. | DOI | MR | Zbl
[16] Wang, J., Dong, X., Zhou, Y.: Existence, attractiveness and stability of solutions for quadratic Urysohn fractional integral equations. Comm. Nonlinear Sci. Numer. Simul. 17 (2012), 545-554. | DOI | MR
[17] Wang, J., Dong, X., Zhou, Y.: Analysis of nonlinear integral equations with Erdélyi-Kober fractional operator. Comm. Nonlinear Sci. Numer. Simul. 17 (2012), 3129-3139. | DOI | MR
[18] Wang, J., Wei, W.: A class of nonlocal impulsive problems for integrodifferential equations in Banach spaces. Results Math. 58 (2010), 379-397. | DOI | MR | Zbl
[19] Wei, W., Xiang, X., Peng, Y.: Nonlinear impulsive integro-differential equation of mixed type and optimal controls. Optimization 55 (2006), 141-156. | DOI | MR
[20] Wang, J., Xiang, X., Peng, Y.: Periodic solutions of semilinear impulsive periodic system on Banach space. Nonlinear Anal. 71 (2009), e1344-e1353. | DOI | MR | Zbl
[21] Wei, W., Hou, S., Teo, K. L.: On a class of strongly nonlinear impulsive differential equation with time delay. Nonlinear Dyn. Syst. Theory 6 (2006), 281-293. | MR | Zbl
[22] Xiang, X., Wei, W., Jiang, Y.: Strongly nonlinear impulsive system and necessary conditions of optimality. Dyn. Cont. Discrete Impuls. Syst. 12 (2005), 811-824. | MR | Zbl
[23] Xu, D., Yang, Z., Yang, Z.: Exponential stability of nonlinear impulsive neutral differential equations with delays. Nonlinear Anal. 67 (2007), 1426-1439. | DOI | MR | Zbl
[24] Yang, T.: Impulsive Control Theory. Springer-Verlag, Berlin - Heidelberg 2001. | MR | Zbl
[25] Yang, Z., Xu, D.: Stability analysis and design of impulsive control system with time delay. IEEE Trans. Automat. Control 52 (2007), 1148-1154. | DOI | MR
[26] Yu, X., Xiang, X., Wei, W.: Solution bundle for class of impulsive differential inclusions on Banach spaces. J. Math. Anal. Appl. 327 (2007), 220-232. | DOI | MR
[27] Zhang, Y., Sun, J.: Strict stability of impulsive functional differential equations. J. Math. Anal. Appl. 301 (2005), 237-248. | DOI | MR | Zbl