Novel Method for Generalized Stability Analysis of Nonlinear Impulsive Evolution Equations
Kybernetika, Tome 48 (2012) no. 6, pp. 1211-1228 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we discuss some generalized stability of solutions to a class of nonlinear impulsive evolution equations in the certain piecewise essentially bounded functions space. Firstly, stabilization of solutions to nonlinear impulsive evolution equations are studied by means of fixed point methods at an appropriate decay rate. Secondly, stable manifolds for the associated singular perturbation problems with impulses are compared with each other. Finally, an example on initial boundary value problem for impulsive parabolic equations is illustrated to our theory results.
In this paper, we discuss some generalized stability of solutions to a class of nonlinear impulsive evolution equations in the certain piecewise essentially bounded functions space. Firstly, stabilization of solutions to nonlinear impulsive evolution equations are studied by means of fixed point methods at an appropriate decay rate. Secondly, stable manifolds for the associated singular perturbation problems with impulses are compared with each other. Finally, an example on initial boundary value problem for impulsive parabolic equations is illustrated to our theory results.
Classification : 34G20, 35B40, 35K20
Keywords: impulsive evolution equations; stabilization; stable manifolds; singularly perturbed problems
@article{KYB_2012_48_6_a8,
     author = {Wang, JinRong and Zhou, Yong and Wei, Wei},
     title = {Novel {Method} for {Generalized} {Stability} {Analysis} of {Nonlinear} {Impulsive} {Evolution} {Equations}},
     journal = {Kybernetika},
     pages = {1211--1228},
     year = {2012},
     volume = {48},
     number = {6},
     mrnumber = {3052882},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a8/}
}
TY  - JOUR
AU  - Wang, JinRong
AU  - Zhou, Yong
AU  - Wei, Wei
TI  - Novel Method for Generalized Stability Analysis of Nonlinear Impulsive Evolution Equations
JO  - Kybernetika
PY  - 2012
SP  - 1211
EP  - 1228
VL  - 48
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a8/
LA  - en
ID  - KYB_2012_48_6_a8
ER  - 
%0 Journal Article
%A Wang, JinRong
%A Zhou, Yong
%A Wei, Wei
%T Novel Method for Generalized Stability Analysis of Nonlinear Impulsive Evolution Equations
%J Kybernetika
%D 2012
%P 1211-1228
%V 48
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a8/
%G en
%F KYB_2012_48_6_a8
Wang, JinRong; Zhou, Yong; Wei, Wei. Novel Method for Generalized Stability Analysis of Nonlinear Impulsive Evolution Equations. Kybernetika, Tome 48 (2012) no. 6, pp. 1211-1228. http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a8/

[1] Abada, N., Benchohra, M., Hammouche, H.: Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions. J. Differential Equations 246 (2009), 3834-3863. | DOI | MR | Zbl

[2] Ahmed, N. U.: Existence of optimal controls for a general class of impulsive systems on Banach space. SIAM J. Control Optim. 42 (2003), 669-685. | DOI | MR

[3] Ahmed, N. U., Teo, K. L., Hou, S. H.: Nonlinear impulsive systems on infinite dimensional spaces. Nonlinear Anal. 54 (2003), 907-925. | DOI | MR | Zbl

[4] Benchohra, M., Henderson, J., Ntouyas, S. K.: Impulsive differential equations and inclusions. In: Contemporary Mathematics and Its Applications, Vol. 2, Hindawi Publishing Corporation, New York 2006. | MR | Zbl

[5] Bounit, H., Hammouri, H.: Stabilization of infinite-dimensional semilinear systems with dissipative drift. Appl. Math. Optim. 37 (1998), 225-242. | DOI | MR | Zbl

[6] Chang, Y. K., Nieto, J. J.: Existence of solutions for impulsive neutral integro-differential inclusions with nonlocal initial conditions via fractional operators. Numer. Funct. Anal. Optim. 30 (2009), 227-244. | DOI | MR | Zbl

[7] Dvirnyĭ, A. I., Slyn'ko, V. I.: Stability of solutions to impulsive differential equations in critical cases. Sibirsk. Mat. Zh. 52 (2011), 70-80. | MR

[8] Fan, Z., Li, G.: Existence results for semilinear differential equations with nonlocal and impulsive conditions. J. Funct. Anal. 258 (2010), 1709-1727. | DOI | MR | Zbl

[9] Hernández, E., Rabello, M., Henríquez, H. R.: Existence of solutions for impulsive partial neutral functional differential equations. J. Math. Anal. Appl. 331 (2007), 1135-1158. | DOI | MR

[10] Koliha, J. J., Straškraba, I.: Stability in nonlinear evolution problems by means of fixed point theorem. Comment. Math. Univ. Carolin. 38 (1997), 37-59. | MR

[11] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations. World Scientific, Singapore - London 1989. | MR | Zbl

[12] Liang, J., Liu, J. H., Xiao, T.-J.: Nonlocal impulsive problems for nonlinear differential equations in Banach spaces. Math. Comput. Model. 49 (2009), 798-804. | DOI | MR | Zbl

[13] Liu, J.: Nonlinear impulsive evolution equations. Dynamic Contin. Discrete Impuls. Syst. 6 (1999), 77-85. | MR | Zbl

[14] Lü, J., Chen, G.: Generating multiscroll Chaotic attractors: Theories, Methods and Applications. Internat. J. Bifurcation and Chaos 16 (2006), 775-858. | DOI | MR

[15] Lü, J., Han, F., Yu, X., Chen, G.: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method. Automatica 40 (2004), 1677-1687. | DOI | MR | Zbl

[16] Wang, J., Dong, X., Zhou, Y.: Existence, attractiveness and stability of solutions for quadratic Urysohn fractional integral equations. Comm. Nonlinear Sci. Numer. Simul. 17 (2012), 545-554. | DOI | MR

[17] Wang, J., Dong, X., Zhou, Y.: Analysis of nonlinear integral equations with Erdélyi-Kober fractional operator. Comm. Nonlinear Sci. Numer. Simul. 17 (2012), 3129-3139. | DOI | MR

[18] Wang, J., Wei, W.: A class of nonlocal impulsive problems for integrodifferential equations in Banach spaces. Results Math. 58 (2010), 379-397. | DOI | MR | Zbl

[19] Wei, W., Xiang, X., Peng, Y.: Nonlinear impulsive integro-differential equation of mixed type and optimal controls. Optimization 55 (2006), 141-156. | DOI | MR

[20] Wang, J., Xiang, X., Peng, Y.: Periodic solutions of semilinear impulsive periodic system on Banach space. Nonlinear Anal. 71 (2009), e1344-e1353. | DOI | MR | Zbl

[21] Wei, W., Hou, S., Teo, K. L.: On a class of strongly nonlinear impulsive differential equation with time delay. Nonlinear Dyn. Syst. Theory 6 (2006), 281-293. | MR | Zbl

[22] Xiang, X., Wei, W., Jiang, Y.: Strongly nonlinear impulsive system and necessary conditions of optimality. Dyn. Cont. Discrete Impuls. Syst. 12 (2005), 811-824. | MR | Zbl

[23] Xu, D., Yang, Z., Yang, Z.: Exponential stability of nonlinear impulsive neutral differential equations with delays. Nonlinear Anal. 67 (2007), 1426-1439. | DOI | MR | Zbl

[24] Yang, T.: Impulsive Control Theory. Springer-Verlag, Berlin - Heidelberg 2001. | MR | Zbl

[25] Yang, Z., Xu, D.: Stability analysis and design of impulsive control system with time delay. IEEE Trans. Automat. Control 52 (2007), 1148-1154. | DOI | MR

[26] Yu, X., Xiang, X., Wei, W.: Solution bundle for class of impulsive differential inclusions on Banach spaces. J. Math. Anal. Appl. 327 (2007), 220-232. | DOI | MR

[27] Zhang, Y., Sun, J.: Strict stability of impulsive functional differential equations. J. Math. Anal. Appl. 301 (2005), 237-248. | DOI | MR | Zbl