Finite-time consensus problem for multiple non-holonomic mobile agents
Kybernetika, Tome 48 (2012) no. 6, pp. 1180-1193 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, the problem of finite time consensus is discussed for multiple non-holonomic mobile agents. The objective is to design a distributed finite time control law such that the controlled multiple non-holonomic mobile agents can reach consensus within any given finite settling time. We propose a novel switching control strategy with the help of time-rescalling technique and graph theory. The numerical simulations are presented to show the effectiveness of the method.
In this paper, the problem of finite time consensus is discussed for multiple non-holonomic mobile agents. The objective is to design a distributed finite time control law such that the controlled multiple non-holonomic mobile agents can reach consensus within any given finite settling time. We propose a novel switching control strategy with the help of time-rescalling technique and graph theory. The numerical simulations are presented to show the effectiveness of the method.
Classification : 93D15, 93D21
Keywords: finite time consensus; nonholonomic system; time-rescaling; mobile agents
@article{KYB_2012_48_6_a6,
     author = {Wang, Jiankui and Qiu, Zhihui and Zhang, Guoshan},
     title = {Finite-time consensus problem for multiple non-holonomic mobile agents},
     journal = {Kybernetika},
     pages = {1180--1193},
     year = {2012},
     volume = {48},
     number = {6},
     mrnumber = {3052880},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a6/}
}
TY  - JOUR
AU  - Wang, Jiankui
AU  - Qiu, Zhihui
AU  - Zhang, Guoshan
TI  - Finite-time consensus problem for multiple non-holonomic mobile agents
JO  - Kybernetika
PY  - 2012
SP  - 1180
EP  - 1193
VL  - 48
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a6/
LA  - en
ID  - KYB_2012_48_6_a6
ER  - 
%0 Journal Article
%A Wang, Jiankui
%A Qiu, Zhihui
%A Zhang, Guoshan
%T Finite-time consensus problem for multiple non-holonomic mobile agents
%J Kybernetika
%D 2012
%P 1180-1193
%V 48
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a6/
%G en
%F KYB_2012_48_6_a6
Wang, Jiankui; Qiu, Zhihui; Zhang, Guoshan. Finite-time consensus problem for multiple non-holonomic mobile agents. Kybernetika, Tome 48 (2012) no. 6, pp. 1180-1193. http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a6/

[1] Bhat, S. P., Bernstein, D. S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Automat. Control 43 (1998), 5, 678-682. | DOI | MR | Zbl

[2] Bhat, S. P., Bernstein, D. S.: Geometric homogeneity with applications to finite-time stability. Math. Control, Signals, and Systems 17 (2005), 2, 101-127. | DOI | MR | Zbl

[3] Dong, W. J., Farrell, J. A.: Cooperative control of multiple nonholonomic mobile agents. IEEE Trans. Automat. Control 53 (2008), 6, 1434-1448. | DOI | MR

[4] Du, H., Li, S., Qian, C.: Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans. Automat. Control 56 (2011), 11, 2711-2717. | DOI | MR

[5] Du, H., Li, S., Lin, X.: Finite-time formation control of multi-agent systems via dynamic output feedback. Internat. J. Robust and Nonlinear Control (2012), published online.

[6] Feng, X., Long, W.: Reaching agreement in finite time via continuous local state feedback. In: Chinese Control Conference 2007, pp. 711-715.

[7] Hong, Y., Wang, J.: Stabilization of uncertain chained form systems within finite settling time. IEEE Trans. Automat. Control 50 (2005), 9, 1379-1384. | DOI | MR

[8] Hong, Y., Hu, J. P., Gao, L. X.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 7, 1177-1182. | DOI | MR | Zbl

[9] Hong, Y., Jiang, Z., Feng, G.: Finite-time input-to-state stability and applications to finite-time control design. SIAM J. Control Optim. 48 (2010), 7, 4395-4418. | DOI | MR | Zbl

[10] Justh, E. W., Krishnaprasad, P. S.: Equilibrium and steering laws for planar formations. Systems Control Lett. 52 (2004), 1, 25-38. | DOI | MR

[11] Beard, R. W., Lawton, J., Young, B. J.: A decentralized approach to formation maneuvers. IEEE Trans. Robotics Automat. 19 (2003), 6, 933-941. | DOI

[12] Li, S., Liu, H., Ding, S.: A speed control for a pmsm using finite-time feedback control and disturbance compensation. Trans. Inst. Measurement and Control 32 (2010), 2, 170-187. | DOI

[13] Li, S., Du, H., Lin, X.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47 (2011), 8, 1706-1712. | DOI | MR | Zbl

[14] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 9, 1520-1533. | DOI | MR

[15] Wang, J., Zhang, G., Li, H.: Adaptive control of uncertain nonholonomic systems in finite time. Kybernetika 45 (2009), 5, 809-824. | MR | Zbl

[16] Wang, J., Zhao, Y., Song, X., Zhang, G.: Semi-global robust finite time stabilization of non-holonomic chained form systems with perturbed terms. In: 8th World Congress on Intelligent Control and Automation (WCICA) 2010, pp. 3662-3667.

[17] Wang, X. L., Hong, Y.: Finite-time consensus for multi-agent networks with second-order agent dynamics. In: Proc. 17th World Congress The International Federation of Automatic Control (2008), pp. 15185-15190.