A Lyapunov-based design tool of impedance controllers for robot manipulators
Kybernetika, Tome 48 (2012) no. 6, pp. 1136-1155 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper presents a design tool of impedance controllers for robot manipulators, based on the formulation of Lyapunov functions. The proposed control approach addresses two challenges: the regulation of the interaction forces, ensured by the impedance error converging to zero, while preserving a suitable path tracking despite constraints imposed by the environment. The asymptotic stability of an equilibrium point of the system, composed by full nonlinear robot dynamics and the impedance control, is demonstrated according to Lyapunov's direct method. The system's performance was tested through the real-time experimental implementation of an interaction task involving a two degree-of-freedom, direct-drive robot.
This paper presents a design tool of impedance controllers for robot manipulators, based on the formulation of Lyapunov functions. The proposed control approach addresses two challenges: the regulation of the interaction forces, ensured by the impedance error converging to zero, while preserving a suitable path tracking despite constraints imposed by the environment. The asymptotic stability of an equilibrium point of the system, composed by full nonlinear robot dynamics and the impedance control, is demonstrated according to Lyapunov's direct method. The system's performance was tested through the real-time experimental implementation of an interaction task involving a two degree-of-freedom, direct-drive robot.
Classification : 68T40, 93C85, 93D05
Keywords: impedance control; Lyapunov stability; robot manipulator
@article{KYB_2012_48_6_a4,
     author = {Mendoza, Marco and Bonilla, Isela and Reyes, Fernando and Gonz\'alez-Galv\'an, Emilio},
     title = {A {Lyapunov-based} design tool of impedance controllers for robot manipulators},
     journal = {Kybernetika},
     pages = {1136--1155},
     year = {2012},
     volume = {48},
     number = {6},
     mrnumber = {3052878},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a4/}
}
TY  - JOUR
AU  - Mendoza, Marco
AU  - Bonilla, Isela
AU  - Reyes, Fernando
AU  - González-Galván, Emilio
TI  - A Lyapunov-based design tool of impedance controllers for robot manipulators
JO  - Kybernetika
PY  - 2012
SP  - 1136
EP  - 1155
VL  - 48
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a4/
LA  - en
ID  - KYB_2012_48_6_a4
ER  - 
%0 Journal Article
%A Mendoza, Marco
%A Bonilla, Isela
%A Reyes, Fernando
%A González-Galván, Emilio
%T A Lyapunov-based design tool of impedance controllers for robot manipulators
%J Kybernetika
%D 2012
%P 1136-1155
%V 48
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a4/
%G en
%F KYB_2012_48_6_a4
Mendoza, Marco; Bonilla, Isela; Reyes, Fernando; González-Galván, Emilio. A Lyapunov-based design tool of impedance controllers for robot manipulators. Kybernetika, Tome 48 (2012) no. 6, pp. 1136-1155. http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a4/

[1] Anderson, R., Spong, M.: Hybrid impedance control of robotic manipulators. IEEE Trans. Robotic. Autom. 4 (1988), 5, 549-556. | DOI

[2] Canudas, C., Siciliano, B., Bastin, G.: Theory of Robot Control. Springer-Verlag, 1996.

[3] Carelli, R., Kelly, R.: An adaptive impedance/force controller for robot manipulators. IEEE Trans. Automat. Control 36 (1991), 8, 967-971. | DOI | MR | Zbl

[4] Chiaverini, S., Siciliano, B., Villani, L.: A survey of robot interaction control schemes with experimental comparison. IEEE-ASME Trans. Mech. 4 (1999), 273-285. | DOI

[5] González, J., Widmann, G.: A force commanded impedance control scheme for robots with hard nonlinearities. IEEE Trans. Control Syst. Theory 3 (1995), 4, 398-408. | DOI

[6] Hagn, U., Ortmaier, T., Konietschke, R., Kuebler, B., Seibold, U., Tobergte, A., Nickl, M., Joerg, S., Hirzinger, G.: Telemanipulators for remote minimally invasive surgery. IEEE Robot. Automat. Magazine 15 (2008), 4, 28-38. | DOI

[7] Hagn, U., Nickl, M., Jörg, S., Passig, G., Bahls, T., Nothhelfer, A., Hacker, F., Le-Tien, L., Albu-Schäffer, A., Konietschke, R., Grebenstein, M., Warpup, R., Haslinger, R., Frommberger, M., Hirzinger, G.: The DLR MIRO: A versatile lightweight robot for surgical applications. Ind. Robot 35 (2008), 4, 324-336. | DOI

[8] Hogan, N.: Impedance control: An approach to manipulation: Part I - Theory, Part II - Implementation and Part III - Applications. J. Dyn. Syst-T ASME 107 (1985), 1-24. | DOI

[9] Hoon-Kang, S., Jin, M., Hun-Chang, P.: A solution to the accuracy/robustness dilemma in impedance control. IEEE-ASME Trans. Mech. 14 (2009), 3, 282-294. | DOI

[10] Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, New York 1985. | MR | Zbl

[11] Jager, A. de, Banens, J.: Experimental evaluation of robot controllers. In: Proc. 33rd Conf. Decision Control, Lake Buena Vista 1994, pp. 363-368.

[12] Jaritz, A., Spong, M. W.: An experimental comparison of robust control algorithms on a direct drive manipulators. IEEE Trans. Control Syst. Theory 4 (1996), 627-640. | DOI

[13] Kazerooni, H.: Robust nonlinear impedance control for robot manipulators. In: Proc. IEEE Int. Conf. Robotic. Autom. 1987, pp. 741-750.

[14] Kim, K., Hori, Y.: Experimental evaluation of adaptive and robust schemes for robot manipulator control. IEEE Trans. Ind. Electron. 42 (1995), 653-662. | DOI

[15] Krebs, H. I., Ferraro, M., P, S., Buerger, Newbery, M. J., Makiyama, A., Sandmann, M., Lynch, D., Volpe, B. T., Hogan, N.: Rehabilitation robotics: Pilot trial of a spatial extension for MIT-manus. J. Neuroeng. Rehabil. 1 (2004), 5. | DOI

[16] Krebs, H. I., Volpe, B. T., L, M., Aisen, Hening, W., Adamovich, S., Poizner, H., Subrahmanyan, K., Hogan, N.: Robotic applications in neuromotor rehabilitation. Robotica 21 (2003), 3-11. | DOI

[17] Lippiello, V., Siciliano, B., Villani, L.: Robot interaction control using force and vision. In: Proc. IEEE-RSJ Int. Conf. Robot. Syst., 2006, pp. 1470-1475. | Zbl

[18] Lippiello, V., Siciliano, B., Villani, L.: A position-based visual impedance control for robot manipulators. In: Proc. IEEE Int. Conf. Robotic. Autom., Roma 2007, pp. 2068-2073.

[19] Marchal-Crespo, L., Reinkensmeyer, D. J.: Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 6 (2009), 20. | DOI

[20] McCormick, W., Schwartz, H.: An investigation of impedance control for robot manipulators. Internat. J. Robot. Res. 12 (1993), 5, 473-489. | DOI

[21] Okamura, A. M.: Methods for haptic feedback in teleoperated robot-assisted surgery. Ind. Robot 31(6) (2004), 499-508. | DOI

[22] Raibert, M., Craig, J.: Hybrid position/force control of manipulators. J. Dyn. Syst-T ASME 102 (1981), 126-133. | DOI

[23] Reyes, F., Kelly, R.: Experimental evaluation of identification schemes on a direct drive robot. Robotica 15 (1997), 563-571. | DOI

[24] Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators. McGraw-Hill, New York 1996.

[25] Siciliano, B., Villani, L.: Robot Force Control. Kluwer Academic Publishers, Boston 1999. | Zbl

[26] Spong, M. W., Vidyasagar, M.: Robots Dynamics and Control. John Wiley and Sons, New York 1989.

[27] Takegaki, M., Arimoto, S.: A new feedback method for dynamic control of manipulators. J. Dyn. Syst-T ASME 102 (1981), 119-125. | DOI | Zbl

[28] Tsoi, Y. H., Xie, S. Q.: Impedance control of ankle rehabilitation robot. In: Proc. IEEE Int. Conf. Robotic. Bio., Bangkok 2009.

[29] Whitcomb, L., Rizzi, A., Koditschek, D. E.: Comparative experiments with a new adaptive controller for robot arms. IEEE Trans. Robotic. Autom. 9 (1993), 59-70. | DOI

[30] Whitney, D.: Historical perspective and state of the art in robot force control. In: Proc. IEEE Int. Conf. Robotic. Autom. 1985, pp. 262-268.