Keywords: impedance control; Lyapunov stability; robot manipulator
@article{KYB_2012_48_6_a4,
author = {Mendoza, Marco and Bonilla, Isela and Reyes, Fernando and Gonz\'alez-Galv\'an, Emilio},
title = {A {Lyapunov-based} design tool of impedance controllers for robot manipulators},
journal = {Kybernetika},
pages = {1136--1155},
year = {2012},
volume = {48},
number = {6},
mrnumber = {3052878},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a4/}
}
TY - JOUR AU - Mendoza, Marco AU - Bonilla, Isela AU - Reyes, Fernando AU - González-Galván, Emilio TI - A Lyapunov-based design tool of impedance controllers for robot manipulators JO - Kybernetika PY - 2012 SP - 1136 EP - 1155 VL - 48 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a4/ LA - en ID - KYB_2012_48_6_a4 ER -
%0 Journal Article %A Mendoza, Marco %A Bonilla, Isela %A Reyes, Fernando %A González-Galván, Emilio %T A Lyapunov-based design tool of impedance controllers for robot manipulators %J Kybernetika %D 2012 %P 1136-1155 %V 48 %N 6 %U http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a4/ %G en %F KYB_2012_48_6_a4
Mendoza, Marco; Bonilla, Isela; Reyes, Fernando; González-Galván, Emilio. A Lyapunov-based design tool of impedance controllers for robot manipulators. Kybernetika, Tome 48 (2012) no. 6, pp. 1136-1155. http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a4/
[1] Anderson, R., Spong, M.: Hybrid impedance control of robotic manipulators. IEEE Trans. Robotic. Autom. 4 (1988), 5, 549-556. | DOI
[2] Canudas, C., Siciliano, B., Bastin, G.: Theory of Robot Control. Springer-Verlag, 1996.
[3] Carelli, R., Kelly, R.: An adaptive impedance/force controller for robot manipulators. IEEE Trans. Automat. Control 36 (1991), 8, 967-971. | DOI | MR | Zbl
[4] Chiaverini, S., Siciliano, B., Villani, L.: A survey of robot interaction control schemes with experimental comparison. IEEE-ASME Trans. Mech. 4 (1999), 273-285. | DOI
[5] González, J., Widmann, G.: A force commanded impedance control scheme for robots with hard nonlinearities. IEEE Trans. Control Syst. Theory 3 (1995), 4, 398-408. | DOI
[6] Hagn, U., Ortmaier, T., Konietschke, R., Kuebler, B., Seibold, U., Tobergte, A., Nickl, M., Joerg, S., Hirzinger, G.: Telemanipulators for remote minimally invasive surgery. IEEE Robot. Automat. Magazine 15 (2008), 4, 28-38. | DOI
[7] Hagn, U., Nickl, M., Jörg, S., Passig, G., Bahls, T., Nothhelfer, A., Hacker, F., Le-Tien, L., Albu-Schäffer, A., Konietschke, R., Grebenstein, M., Warpup, R., Haslinger, R., Frommberger, M., Hirzinger, G.: The DLR MIRO: A versatile lightweight robot for surgical applications. Ind. Robot 35 (2008), 4, 324-336. | DOI
[8] Hogan, N.: Impedance control: An approach to manipulation: Part I - Theory, Part II - Implementation and Part III - Applications. J. Dyn. Syst-T ASME 107 (1985), 1-24. | DOI
[9] Hoon-Kang, S., Jin, M., Hun-Chang, P.: A solution to the accuracy/robustness dilemma in impedance control. IEEE-ASME Trans. Mech. 14 (2009), 3, 282-294. | DOI
[10] Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, New York 1985. | MR | Zbl
[11] Jager, A. de, Banens, J.: Experimental evaluation of robot controllers. In: Proc. 33rd Conf. Decision Control, Lake Buena Vista 1994, pp. 363-368.
[12] Jaritz, A., Spong, M. W.: An experimental comparison of robust control algorithms on a direct drive manipulators. IEEE Trans. Control Syst. Theory 4 (1996), 627-640. | DOI
[13] Kazerooni, H.: Robust nonlinear impedance control for robot manipulators. In: Proc. IEEE Int. Conf. Robotic. Autom. 1987, pp. 741-750.
[14] Kim, K., Hori, Y.: Experimental evaluation of adaptive and robust schemes for robot manipulator control. IEEE Trans. Ind. Electron. 42 (1995), 653-662. | DOI
[15] Krebs, H. I., Ferraro, M., P, S., Buerger, Newbery, M. J., Makiyama, A., Sandmann, M., Lynch, D., Volpe, B. T., Hogan, N.: Rehabilitation robotics: Pilot trial of a spatial extension for MIT-manus. J. Neuroeng. Rehabil. 1 (2004), 5. | DOI
[16] Krebs, H. I., Volpe, B. T., L, M., Aisen, Hening, W., Adamovich, S., Poizner, H., Subrahmanyan, K., Hogan, N.: Robotic applications in neuromotor rehabilitation. Robotica 21 (2003), 3-11. | DOI
[17] Lippiello, V., Siciliano, B., Villani, L.: Robot interaction control using force and vision. In: Proc. IEEE-RSJ Int. Conf. Robot. Syst., 2006, pp. 1470-1475. | Zbl
[18] Lippiello, V., Siciliano, B., Villani, L.: A position-based visual impedance control for robot manipulators. In: Proc. IEEE Int. Conf. Robotic. Autom., Roma 2007, pp. 2068-2073.
[19] Marchal-Crespo, L., Reinkensmeyer, D. J.: Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 6 (2009), 20. | DOI
[20] McCormick, W., Schwartz, H.: An investigation of impedance control for robot manipulators. Internat. J. Robot. Res. 12 (1993), 5, 473-489. | DOI
[21] Okamura, A. M.: Methods for haptic feedback in teleoperated robot-assisted surgery. Ind. Robot 31(6) (2004), 499-508. | DOI
[22] Raibert, M., Craig, J.: Hybrid position/force control of manipulators. J. Dyn. Syst-T ASME 102 (1981), 126-133. | DOI
[23] Reyes, F., Kelly, R.: Experimental evaluation of identification schemes on a direct drive robot. Robotica 15 (1997), 563-571. | DOI
[24] Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators. McGraw-Hill, New York 1996.
[25] Siciliano, B., Villani, L.: Robot Force Control. Kluwer Academic Publishers, Boston 1999. | Zbl
[26] Spong, M. W., Vidyasagar, M.: Robots Dynamics and Control. John Wiley and Sons, New York 1989.
[27] Takegaki, M., Arimoto, S.: A new feedback method for dynamic control of manipulators. J. Dyn. Syst-T ASME 102 (1981), 119-125. | DOI | Zbl
[28] Tsoi, Y. H., Xie, S. Q.: Impedance control of ankle rehabilitation robot. In: Proc. IEEE Int. Conf. Robotic. Bio., Bangkok 2009.
[29] Whitcomb, L., Rizzi, A., Koditschek, D. E.: Comparative experiments with a new adaptive controller for robot arms. IEEE Trans. Robotic. Autom. 9 (1993), 59-70. | DOI
[30] Whitney, D.: Historical perspective and state of the art in robot force control. In: Proc. IEEE Int. Conf. Robotic. Autom. 1985, pp. 262-268.