Keywords: discrete-event systems; supervisory control; Petri nets; time-delay; deadlock
@article{KYB_2012_48_6_a3,
author = {Aybar, Aydin and \.Iftar, Altu\u{g}},
title = {Supervisory controller design for timed-place {Petri} nets},
journal = {Kybernetika},
pages = {1114--1135},
year = {2012},
volume = {48},
number = {6},
mrnumber = {3052877},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a3/}
}
Aybar, Aydin; İftar, Altuğ. Supervisory controller design for timed-place Petri nets. Kybernetika, Tome 48 (2012) no. 6, pp. 1114-1135. http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a3/
[1] Apaydin, H., Manay, A., Aybar, A., İftar, A.: A program for analysis and control of Petri nets. In: Proc. IEEE International Conference on Computational Cybernetics, Vienna 2004, pp. 309-314.
[2] Aybar, A., İftar, A.: Overlapping decompositions and expansions of Petri nets. IEEE Trans. Automat. Control 47 (2002), 511-515. | DOI | MR
[3] Aybar, A., İftar, A.: Decentralized supervisory controller design to avoid deadlock in Petri nets. Internat. J. Control 76 (2003), 1285-1295. Also see: A. Aybar and A. İftar: Corrections to decentralized supervisory controller design to avoid deadlock in Petri nets. Internat. J. Control 76 (2003), 1584. | DOI | MR | Zbl
[4] Aybar, A., İftar, A.: Supervisory controller design for timed Petri nets. In: Proc. IEEE International Conference on System of Systems Engineering, Los Angeles 2006, pp. 59-64.
[5] Aybar, A., İftar, A.: Deadlock avoidance controller design for timed Petri nets using stretching. IEEE Systems J. 2 (2008), 178-188. | DOI
[6] Aybar, A., İftar, A.: Decentralized structural controller design for large-scale discrete-event systems modelled by Petri nets. Kybernetika 45 (2009), 3-14. | MR | Zbl
[7] Aybar, A., İftar, A.: Representation of the state of timed-place Petri nets using stretching. In: Proc. 4th IFAC Workshop on Discrete-Event System Design, Playa de Gandia 2009, pp. 79-84.
[8] Aybar, A., İftar, A.: Supervisory controller design to enforce some basic properties in timed-transition Petri nets using stretching. Nonlinear Analysis: Hybrid Systems 6 (2012), 712-729. | MR | Zbl
[9] Aybar, A., İftar, A., Apaydin-Özkan, H.: Centralized and decentralized supervisory controller design to enforce boundedness, liveness, and reversibility in Petri nets. Internat. J. Control 78 (2005), 537-553. | DOI | MR | Zbl
[10] Bowden, F. D. J.: A brief survey and synthesis of the roles of time in Petri nets. Math. Comput. Modelling 31 (2000), 55-68. | DOI | MR | Zbl
[11] Cassandras, C. G., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer Academic, Norwell 1999. | MR | Zbl
[12] Fanti, M. P., Maione, B., Turchiano, B.: Comparing digraph and Petri net approaches to deadlock avoidance in FMS. IEEE Trans. Systems, Man Cybernet. - Part B, 30 (2000), 783-798. | DOI
[13] Fanti, M. P., Zhou, M.: Deadlock control methods in automated manufacturing systems. IEEE Trans. Systems, Man, Cybernet. - Part A 34 (2004), 5-22. | DOI
[14] Freedman, P.: Time, Petri nets, and robotics. IEEE Trans. Robotics Automat. 7 (1991), 417-433. | DOI
[15] Ghaffari, A., Rezg, N., Xie, X.: Maximally permissive and non blocking control of Petri nets using theory of regions. In: Proc. IEEE International Conference on Robotics and Automation, Washington, D. C. 2002, pp. 1895-1900.
[16] Giua, A., Seatzu, C., Basile, F.: Observer-based state-feedback control of timed Petri nets with deadlock recovery. IEEE Trans. Automat. Control 49 (2004), 17-29. | DOI | MR
[17] Hadjicostis, C. N., Verghese, G. C.: Structured redundancy for fault tolerance in state-space models and Petri nets. Kybernetika 35 (1999), 39-55. | MR
[18] Li, Z. W., Zhou, M. C., Wu, N. Q.: A survey and comparison of Petri net-based deadlock prevention policies for flexible manufacturing systems. IEEE Trans. Systems, Man, Cybernet. - Part C 38 (2008), 173-188. | DOI
[19] Murata, T.: Petri nets: Properties, analysis and applications. Proc. IEEE 77 (1989), 541-580.
[20] Pinchinat, S., Riedweg, S.: You can always compute maximally permissive controllers under partial observation when they exist. In: Proc. American Control Conference, Portland 2005, pp. 2287-2292.
[21] Rivera-Rangel, I., Ramirez-Trevino, A., Aguirre-Salas, L. I., Leon, J. Ruiz: Geometrical characterization of observability in interpreted Petri nets. Kybernetika 41 (2005), 553-574. | MR
[22] Uzam, M., Zhou, M.: An iterative synthesis approach to Petri net-based deadlock prevention policy for flexible manufacturing systems. IEEE Trans. Systems, Man, Cybernet. - Part A 37 (2007), 362-371. | DOI
[23] Viswanadham, N., Narahari, Y., Johnson, T. L.: Deadlock prevention and deadlock avoidance in flexible manufacturing systems using Petri net models. IEEE Trans. Robotics Automat. 6 (1990), 713-723. | DOI
[24] Wang, J.: Timed Petri Nets: Theory and Application. Kluwer Academic, Boston 1998. | Zbl
[25] Zhou, M., DiCesare, F.: Petri Net Synthesis for Discrete Event Control of Manufacturing Systems. Kluwer Academic Publishers, Norwell 1993. | Zbl
[26] Zuberek, W. M.: Timed Petri nets in modeling and analysis of cluster tools. IEEE Trans. Robotics Automat. 17 (2001), 562-575. | DOI