State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra
Kybernetika, Tome 48 (2012) no. 6, pp. 1100-1113 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper the tools of pseudo-linear algebra are applied to the realization problem, allowing to unify the study of the continuous- and discrete-time nonlinear control systems under a single algebraic framework. The realization of nonlinear input-output equation, defined in terms of the pseudo-linear operator, in the classical state-space form is addressed by the polynomial approach in which the system is described by two polynomials from the non-commutative ring of skew polynomials. This allows to simplify the existing step-by-step algorithm-based solution. The paper presents explicit formulas to compute the differentials of the state coordinates directly from the polynomial description of the nonlinear system. The method is straight-forward and better suited for implementation in different computer algebra packages such as \textit{Mathematica} or \textit{Maple}.
In this paper the tools of pseudo-linear algebra are applied to the realization problem, allowing to unify the study of the continuous- and discrete-time nonlinear control systems under a single algebraic framework. The realization of nonlinear input-output equation, defined in terms of the pseudo-linear operator, in the classical state-space form is addressed by the polynomial approach in which the system is described by two polynomials from the non-commutative ring of skew polynomials. This allows to simplify the existing step-by-step algorithm-based solution. The paper presents explicit formulas to compute the differentials of the state coordinates directly from the polynomial description of the nonlinear system. The method is straight-forward and better suited for implementation in different computer algebra packages such as \textit{Mathematica} or \textit{Maple}.
Classification : 62A10, 93E12
Keywords: nonlinear control systems; input-output models; realization; pseudo-linear algebra
@article{KYB_2012_48_6_a2,
     author = {Belikov, Juri and Kotta, \"Ulle and T\~onso, Maris},
     title = {State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra},
     journal = {Kybernetika},
     pages = {1100--1113},
     year = {2012},
     volume = {48},
     number = {6},
     mrnumber = {3052876},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a2/}
}
TY  - JOUR
AU  - Belikov, Juri
AU  - Kotta, Ülle
AU  - Tõnso, Maris
TI  - State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra
JO  - Kybernetika
PY  - 2012
SP  - 1100
EP  - 1113
VL  - 48
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a2/
LA  - en
ID  - KYB_2012_48_6_a2
ER  - 
%0 Journal Article
%A Belikov, Juri
%A Kotta, Ülle
%A Tõnso, Maris
%T State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra
%J Kybernetika
%D 2012
%P 1100-1113
%V 48
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a2/
%G en
%F KYB_2012_48_6_a2
Belikov, Juri; Kotta, Ülle; Tõnso, Maris. State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra. Kybernetika, Tome 48 (2012) no. 6, pp. 1100-1113. http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a2/

[1] Bartosiewicz, Z., Kotta, Ü., Pawłuszewicz, E., Wyrwas, M.: Algebraic formalism of differential one-forms for nonlinear control systems on time scales. Proc. Estonian Acad. Sci. 56 (2007), 264-282. | MR | Zbl

[2] Belikov, J., Kotta, Ü., Tõnso, M.: An explicit formula for computation of the state coordinates for nonlinear i/o equation. In: 18th IFAC World Congress, Milano 2011, pp. 7221-7226.

[3] Bronstein, M., Petkovšek, M.: An introduction to pseudo-linear algebra. Theoret. Comput. Sci. 157 (1996), 3-33. | DOI | MR | Zbl

[4] Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds and Physics, Part I: Basics. North-Holland, Amsterdam 1982. | MR

[5] Cohn, R. M.: Difference Algebra. Wiley-Interscience, New York 1965. | MR | Zbl

[6] Conte, G., Moog, C. H., Perdon, A. M.: Algebraic Mehtods for Nonlinear Control Systems. Springer-Verlag, London 2007. | MR

[7] Delaleau, E., Respondek, W.: Lowering the orders of derivatives of controls in generalized state space systems. J. Math. Syst., Estim. Control 5 (1995), 1-27. | MR | Zbl

[8] Grizzle, J. W.: A linear algebraic framework for the analysis of discrete-time nonlinear systems. SIAM J. Control Optim. 31 (1991), 1026-1044. | DOI | MR | Zbl

[9] Halás, M., Kotta, Ü., Li, Z., Wang, H., Yuan, C.: Submersive rational difference systems and their accessibility. In: International Symposium on Symbolic and Algebraic Computation, Seoul 2009, pp. 175-182. | MR | Zbl

[10] Hauser, J., Sastry, S., Kokotović, P.: Nonlinear control via approximate input-output linearization: The ball and beam example. IEEE Trans. Automat. Control 37 (1992), 392-398. | DOI | MR

[11] Kotta, Ü., Kotta, P., Halás, M.: Reduction and transfer equivalence of nonlinear control systems: Unification and extension via pseudo-linear algebra. Kybernetika 46 (2010), 831-849. | MR | Zbl

[12] Kotta, Ü., Kotta, P., Tõnso, M., Halás, M.: State-space realization of nonlinear input-output equations: Unification and extension via pseudo-linear algebra. In: 9th International Conference on Control and Automation, Santiago, Chile 2011, pp. 354-359.

[13] Kotta, Ü., Tõnso, M.: Removing or lowering the orders of input shifts in discrete-time generalized state-space systems with Mathematica. Proc. Estonian Acad. Sci. 51 (2002), 238-254. | MR | Zbl

[14] Kotta, Ü., Tõnso, M.: Realization of discrete-time nonlinear input-output equations: Polynomial approach. Automatica 48 (2012), 255-262. | DOI | MR

[15] McConnell, J. C., Robson, J. C.: Noncommutative Noetherian Rings. John Wiley and Sons, New York 1987. | MR | Zbl

[16] Pang, Z. H., Zheng, G., Luo, C.X.: Augmented state estimation and LQR control for a ball and beam system. In: 6th IEEE Conference on Industrial Electronics and Applications, Beijing 2011, pp. 1328-1332.

[17] Rapisarda, P., Willems, J. C.: State maps for linear systems. SIAM J. Control Optim. 35 (1997), 1053-1091. | DOI | MR | Zbl

[18] Schaft, A. J. van der: On realization of nonlinear systems described by higher-order differential equations. Math. Systems Theory 19 (1987), 239-275. | DOI | MR

[19] Sontag, E. D.: On the observability of polynomial systems, I: Finite-time problems. SIAM J. Control Optim. 17 (1979), 139-151. | DOI | MR | Zbl

[20] Tõnso, M., Kotta, Ü.: Realization of continuous-time nonlinear input-output equations: Polynomial approach. Lecture Notes in Control and Inform. Sci., Springer Berlin / Heidelberg 2009, pp. 633-640.

[21] Tõnso, M., Rennik, H., Kotta, Ü.: WebMathematica-based tools for discrete-time nonlinear control systems. Proc. Estonian Acad. Sci. 58 (2009), 224-240. | MR | Zbl

[22] Yuz, J. I., Goodwin, G. C.: On sampled-data models for nonlinear systems. IEEE Trans. Automat. Control 50 (2005), 1477-1489. | DOI | MR

[23] Zhang, J., Moog, C. H., Xia, X.: Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra. Kybernetika 46 (2010), 799-830. | MR | Zbl

[24] Institute of Cybernetics at Tallinn University of Technology: The nonlinear control webpage. Website, http://nlcontrol.ioc.ee (2012).