Keywords: nonlinear control systems; input-output models; realization; pseudo-linear algebra
@article{KYB_2012_48_6_a2,
author = {Belikov, Juri and Kotta, \"Ulle and T\~onso, Maris},
title = {State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra},
journal = {Kybernetika},
pages = {1100--1113},
year = {2012},
volume = {48},
number = {6},
mrnumber = {3052876},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a2/}
}
TY - JOUR AU - Belikov, Juri AU - Kotta, Ülle AU - Tõnso, Maris TI - State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra JO - Kybernetika PY - 2012 SP - 1100 EP - 1113 VL - 48 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a2/ LA - en ID - KYB_2012_48_6_a2 ER -
%0 Journal Article %A Belikov, Juri %A Kotta, Ülle %A Tõnso, Maris %T State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra %J Kybernetika %D 2012 %P 1100-1113 %V 48 %N 6 %U http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a2/ %G en %F KYB_2012_48_6_a2
Belikov, Juri; Kotta, Ülle; Tõnso, Maris. State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra. Kybernetika, Tome 48 (2012) no. 6, pp. 1100-1113. http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a2/
[1] Bartosiewicz, Z., Kotta, Ü., Pawłuszewicz, E., Wyrwas, M.: Algebraic formalism of differential one-forms for nonlinear control systems on time scales. Proc. Estonian Acad. Sci. 56 (2007), 264-282. | MR | Zbl
[2] Belikov, J., Kotta, Ü., Tõnso, M.: An explicit formula for computation of the state coordinates for nonlinear i/o equation. In: 18th IFAC World Congress, Milano 2011, pp. 7221-7226.
[3] Bronstein, M., Petkovšek, M.: An introduction to pseudo-linear algebra. Theoret. Comput. Sci. 157 (1996), 3-33. | DOI | MR | Zbl
[4] Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds and Physics, Part I: Basics. North-Holland, Amsterdam 1982. | MR
[5] Cohn, R. M.: Difference Algebra. Wiley-Interscience, New York 1965. | MR | Zbl
[6] Conte, G., Moog, C. H., Perdon, A. M.: Algebraic Mehtods for Nonlinear Control Systems. Springer-Verlag, London 2007. | MR
[7] Delaleau, E., Respondek, W.: Lowering the orders of derivatives of controls in generalized state space systems. J. Math. Syst., Estim. Control 5 (1995), 1-27. | MR | Zbl
[8] Grizzle, J. W.: A linear algebraic framework for the analysis of discrete-time nonlinear systems. SIAM J. Control Optim. 31 (1991), 1026-1044. | DOI | MR | Zbl
[9] Halás, M., Kotta, Ü., Li, Z., Wang, H., Yuan, C.: Submersive rational difference systems and their accessibility. In: International Symposium on Symbolic and Algebraic Computation, Seoul 2009, pp. 175-182. | MR | Zbl
[10] Hauser, J., Sastry, S., Kokotović, P.: Nonlinear control via approximate input-output linearization: The ball and beam example. IEEE Trans. Automat. Control 37 (1992), 392-398. | DOI | MR
[11] Kotta, Ü., Kotta, P., Halás, M.: Reduction and transfer equivalence of nonlinear control systems: Unification and extension via pseudo-linear algebra. Kybernetika 46 (2010), 831-849. | MR | Zbl
[12] Kotta, Ü., Kotta, P., Tõnso, M., Halás, M.: State-space realization of nonlinear input-output equations: Unification and extension via pseudo-linear algebra. In: 9th International Conference on Control and Automation, Santiago, Chile 2011, pp. 354-359.
[13] Kotta, Ü., Tõnso, M.: Removing or lowering the orders of input shifts in discrete-time generalized state-space systems with Mathematica. Proc. Estonian Acad. Sci. 51 (2002), 238-254. | MR | Zbl
[14] Kotta, Ü., Tõnso, M.: Realization of discrete-time nonlinear input-output equations: Polynomial approach. Automatica 48 (2012), 255-262. | DOI | MR
[15] McConnell, J. C., Robson, J. C.: Noncommutative Noetherian Rings. John Wiley and Sons, New York 1987. | MR | Zbl
[16] Pang, Z. H., Zheng, G., Luo, C.X.: Augmented state estimation and LQR control for a ball and beam system. In: 6th IEEE Conference on Industrial Electronics and Applications, Beijing 2011, pp. 1328-1332.
[17] Rapisarda, P., Willems, J. C.: State maps for linear systems. SIAM J. Control Optim. 35 (1997), 1053-1091. | DOI | MR | Zbl
[18] Schaft, A. J. van der: On realization of nonlinear systems described by higher-order differential equations. Math. Systems Theory 19 (1987), 239-275. | DOI | MR
[19] Sontag, E. D.: On the observability of polynomial systems, I: Finite-time problems. SIAM J. Control Optim. 17 (1979), 139-151. | DOI | MR | Zbl
[20] Tõnso, M., Kotta, Ü.: Realization of continuous-time nonlinear input-output equations: Polynomial approach. Lecture Notes in Control and Inform. Sci., Springer Berlin / Heidelberg 2009, pp. 633-640.
[21] Tõnso, M., Rennik, H., Kotta, Ü.: WebMathematica-based tools for discrete-time nonlinear control systems. Proc. Estonian Acad. Sci. 58 (2009), 224-240. | MR | Zbl
[22] Yuz, J. I., Goodwin, G. C.: On sampled-data models for nonlinear systems. IEEE Trans. Automat. Control 50 (2005), 1477-1489. | DOI | MR
[23] Zhang, J., Moog, C. H., Xia, X.: Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra. Kybernetika 46 (2010), 799-830. | MR | Zbl
[24] Institute of Cybernetics at Tallinn University of Technology: The nonlinear control webpage. Website, http://nlcontrol.ioc.ee (2012).