Keywords: geometric approach; manipulators; functional controllability
@article{KYB_2012_48_6_a11,
author = {Mercorelli, Paolo},
title = {A geometric algorithm for the output functional controllability in general manipulation systems and mechanisms},
journal = {Kybernetika},
pages = {1266--1288},
year = {2012},
volume = {48},
number = {6},
mrnumber = {3052885},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a11/}
}
TY - JOUR AU - Mercorelli, Paolo TI - A geometric algorithm for the output functional controllability in general manipulation systems and mechanisms JO - Kybernetika PY - 2012 SP - 1266 EP - 1288 VL - 48 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a11/ LA - en ID - KYB_2012_48_6_a11 ER -
Mercorelli, Paolo. A geometric algorithm for the output functional controllability in general manipulation systems and mechanisms. Kybernetika, Tome 48 (2012) no. 6, pp. 1266-1288. http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a11/
[1] Basile, G., Marro, G.: A state space approach to non-interacting controls. Ricerche Automat. 1 (1970), 1, 68-77.
[2] Basile, G., Marro, G.: On the perfect output controllability of linear dynamic systems. Ricerche Automat. 2 (1971), 1-10.
[3] Basile, G., Marro, G.: Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, New Jersey 1992. | MR | Zbl
[4] Bicchi, A., Melchiorri, C., Balluchi, D.: On the mobility and manipulability of general multiple limb robots. IEEE Trans. Automat. Control 11 (1995), 2, 215-228. | DOI
[5] Bicchi, A., Prattichizzo, D.: A standard form for the dynamics of general manipulation systems. In: International Conference on Robotics and Automation (ICRA), 1995.
[6] Bicchi, A., Prattichizzo, D., S., Sastry, S.: Planning motions of rolling surfaces. In: Proc. 34th Conference on Decision and Control (CDC), 1995.
[7] Prattichizzo, A. Bicchi D., Mercorelli, P., Vicino, A.: Noninteracting force/motion control in general manipulation systems. In: Proc. 35th IEEE Conf. on Decision Control, CDC '96, Kobe 1996.
[8] Marro, G., Barbagli, F.: The algebraic output feedback in the light of dual-lattice structures. Kybernetika 35 (1999), 6, 693-706. | MR
[9] Mercorelli, P.: Geometric Control Tools for Mechanical Systems. Ph.D. Thesis, University of Bologna 1998.
[10] Mercorelli, P.: Robust decoupling through algebraic output feedback in manipulation systems. Kybernetika 46 (2010), 5, 850-869. | MR | Zbl
[11] Mercorelli, P., Prattichizzo, D.: A geometric procedure for robust decoupling control of contact forces in robotic manipulation. Kybernetika 39 (2003), 4, 433-445. | MR | Zbl
[12] Murray, R. M., Li, Z., Sastry, S. S.: A Mathematical Introduction to Robotic Manipulation. CRC Publisher, Boca Raton 1994. | MR | Zbl
[13] Prattichizzo, D.: Structural Properties and Control of Robotics Manipulation. Ph.D. Thesis, University of Pisa 1995.
[14] Prattichizzo, D., Bicchi, A.: Specifying consistent control goals for kinematically defective manipulation systems. In: ICRA, 1996.
[15] Prattichizzo, D., Bicchi, A.: Dynamic analysis of mobility and graspability of general manipulation systems. Trans. Robotic Automat. 14 (1998), 2, 251-218.
[16] Prattichizzo, D., Mercorelli, P.: On some geometric control properties of active suspension systems. Kybernetika 36 (2000), 5, 549-570. | MR
[17] Salisbury, J. K.: Whole-arm manipulation. In: Proc. 4th International Symposium of Robotics Research, 1987.
[18] Siciliano, B.: Parallel Force/Position Control of Robotic Manipulatio. Springer-Verlag, London 1996.
[19] Wonham, W. M.: Linear Multivariable Control: A Geometric Approach. Springer-Verlag, New York 1979. | MR | Zbl
[20] Yamamoto, Y., Yun, X.: Effect of the dynamic interaction on coordinated control of mobile manipulators. IEEE Trans. Robotics Automat. 12 (1996), 5, 816-824. | DOI