Efficient algorithm to solve optimal boundary control problem for Burgers' equation
Kybernetika, Tome 48 (2012) no. 6, pp. 1250-1265 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we propose a novel algorithm for solving an optimal boundary control problem of the Burgers' equation. The solving method is based on the transformation of the original problem into a homogeneous boundary conditions problem. This transforms the original problem into an optimal distributed control problem. The modal expansion technique is applied to the distributed control problem of the Burgers' equation to generate a low-dimensional dynamical system. The control parametrization method is formulated for approximating the time-varying control by a finite term of the orthogonal functions with unknown coefficients determined through an optimization process. The minimization of the objective functional is performed by using a conjugate gradient method. The accuracy and convergent rate of this hybrid method are shown by some numerical examples .
In this paper, we propose a novel algorithm for solving an optimal boundary control problem of the Burgers' equation. The solving method is based on the transformation of the original problem into a homogeneous boundary conditions problem. This transforms the original problem into an optimal distributed control problem. The modal expansion technique is applied to the distributed control problem of the Burgers' equation to generate a low-dimensional dynamical system. The control parametrization method is formulated for approximating the time-varying control by a finite term of the orthogonal functions with unknown coefficients determined through an optimization process. The minimization of the objective functional is performed by using a conjugate gradient method. The accuracy and convergent rate of this hybrid method are shown by some numerical examples .
Classification : 35K55, 49M37
Keywords: optimal boundary control; Burgers' equation; conjugate gradient method; modal expansion technique; control parametrization
@article{KYB_2012_48_6_a10,
     author = {Malek, Alaeddin and Ebrahim Nataj, Roghayeh and Yazdanpanah, Mohamad Javad},
     title = {Efficient algorithm to solve optimal boundary control problem for {Burgers'} equation},
     journal = {Kybernetika},
     pages = {1250--1265},
     year = {2012},
     volume = {48},
     number = {6},
     mrnumber = {3052884},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a10/}
}
TY  - JOUR
AU  - Malek, Alaeddin
AU  - Ebrahim Nataj, Roghayeh
AU  - Yazdanpanah, Mohamad Javad
TI  - Efficient algorithm to solve optimal boundary control problem for Burgers' equation
JO  - Kybernetika
PY  - 2012
SP  - 1250
EP  - 1265
VL  - 48
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a10/
LA  - en
ID  - KYB_2012_48_6_a10
ER  - 
%0 Journal Article
%A Malek, Alaeddin
%A Ebrahim Nataj, Roghayeh
%A Yazdanpanah, Mohamad Javad
%T Efficient algorithm to solve optimal boundary control problem for Burgers' equation
%J Kybernetika
%D 2012
%P 1250-1265
%V 48
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a10/
%G en
%F KYB_2012_48_6_a10
Malek, Alaeddin; Ebrahim Nataj, Roghayeh; Yazdanpanah, Mohamad Javad. Efficient algorithm to solve optimal boundary control problem for Burgers' equation. Kybernetika, Tome 48 (2012) no. 6, pp. 1250-1265. http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a10/

[1] Baker, J., Armaou, A., Christofides, P. D.: Nonlinear control of incompressible fluid flow: Application to Burgers' equation and 2D channel flow. J. Math. Anal. Appl. 252 (2000), 230-255. | DOI | MR | Zbl

[2] Balas, M. J.: Active control of flexible systems. J. Optim. Theory 259 (1978), 415-436. | DOI | MR | Zbl

[3] Burgers, J. M.: A mathematical model illustrating the theory of turbulence. Adv. in Appl. Mech. 1 (1948), 171. | DOI | MR

[4] Chang, Y., Lee, T.: Application of general orthogonal polynomials to the optimal control of time-varying linear systems. Internat. J. Control 43 (1986), 4, 1283-1304. | DOI | Zbl

[5] Cole, J. D.: On quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9 (1951), 225-236. | MR

[6] Curtain, R. F., Pritchard, A. J.: Functional Analysis in Modern Applied Mathematics. Academic Press, New York 1977. | MR | Zbl

[7] Dean, E. J., Gubernatis, P.: Pointwise control of Burgers' equation - a numerical approach. Comput. Math. Appl. 22 (1991), 7, 93-100. | DOI | MR | Zbl

[8] Dormand, J. R., Prince, P. J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6 (1980), 19-26. | DOI | MR | Zbl

[9] Endow, Y.: Optimal control via Fourier series of operational matrix of integration. IEEE Trans. Automat. Control 34 (1989), 7, 770-773. | DOI | MR | Zbl

[10] Fletcher, R., Reeves, C. M.: Function minimization by conjugate gradients. Comput. J. 7 (1964), 144-160. | DOI | MR | Zbl

[11] Guerrero, S., Imanuvilov, O. Yu.: Remarks on global controllability for the Burgers' equation with two control forces. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), 897-906. | DOI | MR | Zbl

[12] Heidari, H., Malek, A.: Optimal boundary control for hyperdiffusion equation. Kybernetica 46 (2010), 5, 907-925. | MR | Zbl

[13] King, B. B., Kruger, D. A.: Burgers' equation: Galerkin least squares approximation and feedback control. Math, Comput. Modeling 38 (2003), 1078-1085. | MR

[14] Kucuk, I., Sadek, I.: A numerical approach to an optimal boundary control of the viscous Burgers' equation. Appl. Math. Comput. 210 (2009), 126-135. | DOI | MR | Zbl

[15] Lellouche, J. M., Devenon, J. L., Dekeyser, I.: Boundary control on Burgers' equation. A numerical approach. Comput. Math. Appl. 28 (1994), 33-44. | DOI | MR

[16] Leredde, Y., Lellouche, J. M., Devenon, J. L., Dekeyser, I.: On initial, boundary condition and viscosity coefficient control for Burgers' equation. Internat. J. Numer. Meth. Fluids 28 (1998), 113-128. | DOI | MR

[17] Morton, K. W., Mayers, D. F.: Numerical Solution of Partial Differential Equations, An Introduction. Cambridge University Press 2005. | MR | Zbl

[18] Naylor, A. W., Sell, G. R.: Linear Operator Theory in Engineering and Sciences. Appl. Math. Sci. 40, Springer-Verlag, New York 1982. | DOI | MR

[19] Park, H. M., Lee, M. W., Jang, Y. D.: An efficient compuational method of boundary optimal control problems for the Burgers' equation. Comput. Methods Appl. Mech. Engrg. 166 (1998), 289-308. | DOI | MR

[20] Sadek, I. S., Feng, J.: Modelling techniques for optimal control of distributed parameter systems. Math. Comput. Modelling 187 (1993), 41-58. | DOI | MR | Zbl

[21] Sirisena, H. R., Chou, F. S.: State parameterization approach to the solution of optimal control problems. Optimal Control Appl. Methods 2 (1981), 289-298. | DOI | MR | Zbl