Keywords: optimal boundary control; Burgers' equation; conjugate gradient method; modal expansion technique; control parametrization
@article{KYB_2012_48_6_a10,
author = {Malek, Alaeddin and Ebrahim Nataj, Roghayeh and Yazdanpanah, Mohamad Javad},
title = {Efficient algorithm to solve optimal boundary control problem for {Burgers'} equation},
journal = {Kybernetika},
pages = {1250--1265},
year = {2012},
volume = {48},
number = {6},
mrnumber = {3052884},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a10/}
}
TY - JOUR AU - Malek, Alaeddin AU - Ebrahim Nataj, Roghayeh AU - Yazdanpanah, Mohamad Javad TI - Efficient algorithm to solve optimal boundary control problem for Burgers' equation JO - Kybernetika PY - 2012 SP - 1250 EP - 1265 VL - 48 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a10/ LA - en ID - KYB_2012_48_6_a10 ER -
%0 Journal Article %A Malek, Alaeddin %A Ebrahim Nataj, Roghayeh %A Yazdanpanah, Mohamad Javad %T Efficient algorithm to solve optimal boundary control problem for Burgers' equation %J Kybernetika %D 2012 %P 1250-1265 %V 48 %N 6 %U http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a10/ %G en %F KYB_2012_48_6_a10
Malek, Alaeddin; Ebrahim Nataj, Roghayeh; Yazdanpanah, Mohamad Javad. Efficient algorithm to solve optimal boundary control problem for Burgers' equation. Kybernetika, Tome 48 (2012) no. 6, pp. 1250-1265. http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a10/
[1] Baker, J., Armaou, A., Christofides, P. D.: Nonlinear control of incompressible fluid flow: Application to Burgers' equation and 2D channel flow. J. Math. Anal. Appl. 252 (2000), 230-255. | DOI | MR | Zbl
[2] Balas, M. J.: Active control of flexible systems. J. Optim. Theory 259 (1978), 415-436. | DOI | MR | Zbl
[3] Burgers, J. M.: A mathematical model illustrating the theory of turbulence. Adv. in Appl. Mech. 1 (1948), 171. | DOI | MR
[4] Chang, Y., Lee, T.: Application of general orthogonal polynomials to the optimal control of time-varying linear systems. Internat. J. Control 43 (1986), 4, 1283-1304. | DOI | Zbl
[5] Cole, J. D.: On quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9 (1951), 225-236. | MR
[6] Curtain, R. F., Pritchard, A. J.: Functional Analysis in Modern Applied Mathematics. Academic Press, New York 1977. | MR | Zbl
[7] Dean, E. J., Gubernatis, P.: Pointwise control of Burgers' equation - a numerical approach. Comput. Math. Appl. 22 (1991), 7, 93-100. | DOI | MR | Zbl
[8] Dormand, J. R., Prince, P. J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6 (1980), 19-26. | DOI | MR | Zbl
[9] Endow, Y.: Optimal control via Fourier series of operational matrix of integration. IEEE Trans. Automat. Control 34 (1989), 7, 770-773. | DOI | MR | Zbl
[10] Fletcher, R., Reeves, C. M.: Function minimization by conjugate gradients. Comput. J. 7 (1964), 144-160. | DOI | MR | Zbl
[11] Guerrero, S., Imanuvilov, O. Yu.: Remarks on global controllability for the Burgers' equation with two control forces. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), 897-906. | DOI | MR | Zbl
[12] Heidari, H., Malek, A.: Optimal boundary control for hyperdiffusion equation. Kybernetica 46 (2010), 5, 907-925. | MR | Zbl
[13] King, B. B., Kruger, D. A.: Burgers' equation: Galerkin least squares approximation and feedback control. Math, Comput. Modeling 38 (2003), 1078-1085. | MR
[14] Kucuk, I., Sadek, I.: A numerical approach to an optimal boundary control of the viscous Burgers' equation. Appl. Math. Comput. 210 (2009), 126-135. | DOI | MR | Zbl
[15] Lellouche, J. M., Devenon, J. L., Dekeyser, I.: Boundary control on Burgers' equation. A numerical approach. Comput. Math. Appl. 28 (1994), 33-44. | DOI | MR
[16] Leredde, Y., Lellouche, J. M., Devenon, J. L., Dekeyser, I.: On initial, boundary condition and viscosity coefficient control for Burgers' equation. Internat. J. Numer. Meth. Fluids 28 (1998), 113-128. | DOI | MR
[17] Morton, K. W., Mayers, D. F.: Numerical Solution of Partial Differential Equations, An Introduction. Cambridge University Press 2005. | MR | Zbl
[18] Naylor, A. W., Sell, G. R.: Linear Operator Theory in Engineering and Sciences. Appl. Math. Sci. 40, Springer-Verlag, New York 1982. | DOI | MR
[19] Park, H. M., Lee, M. W., Jang, Y. D.: An efficient compuational method of boundary optimal control problems for the Burgers' equation. Comput. Methods Appl. Mech. Engrg. 166 (1998), 289-308. | DOI | MR
[20] Sadek, I. S., Feng, J.: Modelling techniques for optimal control of distributed parameter systems. Math. Comput. Modelling 187 (1993), 41-58. | DOI | MR | Zbl
[21] Sirisena, H. R., Chou, F. S.: State parameterization approach to the solution of optimal control problems. Optimal Control Appl. Methods 2 (1981), 289-298. | DOI | MR | Zbl