Keywords: dynamical systems; invariant measures; semidefinite programming
@article{KYB_2012_48_6_a1,
author = {Henrion, Didier},
title = {Semidefinite characterisation of invariant measures for one-dimensional discrete dynamical systems},
journal = {Kybernetika},
pages = {1089--1099},
year = {2012},
volume = {48},
number = {6},
mrnumber = {3052875},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a1/}
}
Henrion, Didier. Semidefinite characterisation of invariant measures for one-dimensional discrete dynamical systems. Kybernetika, Tome 48 (2012) no. 6, pp. 1089-1099. http://geodesic.mathdoc.fr/item/KYB_2012_48_6_a1/
[1] Alligood, K. T., Sauer, T. D., Yorke, J. A.: Chaos - An Introduction to Dynamical Systems. Springer, 1997. | MR | Zbl
[2] Barkley, D., Kevrekidis, I. G., Stuart, A. M.: The moment map: nonlinear dynamics of density evolution via a few moments. SIAM J. Appl. Dynam. Systems 5 (2006), 3, 403-434. | DOI | MR | Zbl
[3] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press, 2005. | MR | Zbl
[4] Campbell, D., Crutchfield, J., Farmer, D., Jen, E.: Experimental mathematics: the role of computation in nonlinear science. Comm. ACM 28 (1985), 4, 374-384. | DOI | MR
[5] Dellnitz, M., Junge, O.: On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36 (1999), 2, 491-515. | DOI | MR | Zbl
[6] Diaconis, P., Freedman, D.: Iterated random functions. SIAM Rev. 41 (1999), 1, 45-76. | DOI | MR | Zbl
[7] Góra, P., Boyarsky, A.: Why computers like Lebesgue measure. Comput. Math. Appl. 16 (1988), 4, 321-329. | DOI | MR | Zbl
[8] Góra, P., Boyarsky, A., Islam, M. D. S., Bahsoun, W.: Absolutely continuous invariant measures that cannot be observed experimentally. SIAM J. Appl. Dynam. Systems 5 (2006), 1, 84-90. | DOI | MR | Zbl
[9] Hernández-Lerma, O., Lasserre, J. B.: Markov Chains and Invariant Probabilities. Birkhauser, 2003. | MR | Zbl
[10] Lasota, A., Mackey, M. C.: Probabilistic Properties of Deterministic Systems. Cambridge Univ. Press, 1985. | MR | Zbl
[11] Lasserre, J. B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11 (2001), 3, 796-817. | DOI | MR | Zbl
[12] Lasserre, J. B., Henrion, D., Prieur, C., Trélat, E.: Nonlinear optimal control via occupation measures and LMI relaxations. SIAM J. Control Optim. 47 (2008), 4, 1643-1666. | DOI | MR | Zbl
[13] Peyrl, H., Parrilo, P. A.: A theorem of the alternative for SOS Lyapunov functions. In: Proc. IEEE Conference on Decision and Control, 2007.
[14] Rantzer, A.: A dual to Lyapunov's stability theorem. Systems Control Lett. 42 (2001), 3, 161-168. | DOI | MR | Zbl
[15] Vaidya, U., Mehta, P. G.: Lyapunov measure for almost everywhere stability. IEEE Trans. Automat. Control 53 (2008), 1, 307-323. | DOI | MR