Keywords: telegraph equation; trigonometric wavelets; hermite interpolation; operational matrix of derivative
@article{KYB_2012_48_5_a7,
author = {Jokar, Mahmood and Lakestani, Mehrdad},
title = {Numerical solution of second order one-dimensional linear hyperbolic equation using trigonometric wavelets},
journal = {Kybernetika},
pages = {939--957},
year = {2012},
volume = {48},
number = {5},
mrnumber = {3086861},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a7/}
}
TY - JOUR AU - Jokar, Mahmood AU - Lakestani, Mehrdad TI - Numerical solution of second order one-dimensional linear hyperbolic equation using trigonometric wavelets JO - Kybernetika PY - 2012 SP - 939 EP - 957 VL - 48 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a7/ LA - en ID - KYB_2012_48_5_a7 ER -
Jokar, Mahmood; Lakestani, Mehrdad. Numerical solution of second order one-dimensional linear hyperbolic equation using trigonometric wavelets. Kybernetika, Tome 48 (2012) no. 5, pp. 939-957. http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a7/
[1] Alpert, B., Beylkin, G., Coifman, R., Rokhlin, V.: Wavelet-like bases for the fast solution of second-kind integral equation. SIAM J. Sci. Comput. 14 (1993), 159-184. | DOI | MR
[2] Chui, C. K., Mhaskar, H. N.: On trigonometric wavelets. Constr. Approx. 9 (1993), 167-190. | DOI | MR | Zbl
[3] Chui, C. K.: An Introduction to Wavelets. Academic Press, Boston 1992. | MR | Zbl
[4] Dahmen, W., Prössdorf, S., Schneider, R.: Wavelet approximation methods for pseudodifferential equations. In: Stability and Convergence, Math. Z. 215 (1994), 583-620. | MR | Zbl
[5] Dehghan, M.: On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation. Numer. Methods Partial Differential Equations 21 (2005), 24-40. | DOI | MR | Zbl
[6] Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simulation 71 (2006), 16-30. | DOI | MR | Zbl
[7] Dehghan, M.: Implicit collocation technique for heat equation with non-classic initial condition. Internat. J. Non-Linear Sci. Numer. Simul. 7 (2006), 447-450.
[8] Dehghan, M., Shokri, A.: A numerical method for solving the hyperbolic telegraph equation. Numer. Methods Partial Differential Equations 24 (2008), 1080-1093. | DOI | MR | Zbl
[9] Dehghan, M., Lakestani, M.: The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation. Numer. Methods Partial Differential Equations 25 (2009), 931-938. | DOI | MR | Zbl
[10] Gao, J., Jiang, Y. L.: Trigonometric Hermite wavelet approximation for the integral equations of second kind with weakly singular kernel. J. Comput. Appl. Math. 215 (2008), 242-259. | DOI | MR
[11] Kress, R.: Linear Integral Equations. Springer, New York 1989. | MR | Zbl
[12] Lakestani, M., Dehghan, M.: The solution of a second-order nonlinear differential equation with Neumann boundary conditions using semi-orthogonal B-spline wavelets. Internat. J. Comput. Math. 83 (2006), 8-9, 685-694. | DOI | MR | Zbl
[13] Lakestani, M., Razzaghi, M., Dehghan, M.: Semiorthogonal wavelets approximation for Fredholm integro-differential equations. Math. Prob. Engrg. (2006), 1-12. | DOI
[14] Lakestani, M., Saray, B. N.: Numerical solution of telegraph equation using interpolating scaling functions. Comput. Math. Appl. 60 (2010), 7, 1964-1972. | DOI | MR | Zbl
[15] Lakestani, M., Jokar, M., Dehghan, M.: Numerical solution of nth-Order Integro-Differential equations using trigonometric wavelets. Numer. Math. Methods Appl. Sci. 34 (2011), 11, 1317-1329. | DOI | MR
[16] Lapidus, L., Pinder, G. F.: Numerical Solution of Partial Differential Equations in Science and Engineering. Wiley, New York 1982. | MR | Zbl
[17] Lorentz, G. G.: Convergence theorems for polynomials with many zeros. Math. Z. 186 (1984), 117-123. | DOI | MR | Zbl
[18] Lorentz, G. G., Lorentz, R. A.: Mathematics from Leningrad to Austin. In: Selected Works In Real, Functional And Numerical Analysis, (1997). | Zbl
[19] Mohanty, R. K., Jain, M. K., George, K.: On the use of high order difference methods for the system of one space second order non-linear hyperbolic equations with variable coefficients. J. Comput. Appl. Math. 72 (1996), 421-431. | DOI | MR
[20] Mohanty, R. K.: An unconditionally stable difference scheme for the one-space dimensional linear hyperbolic equation. Appl. Math. Lett. 17 (2004), 101-105. | DOI | MR | Zbl
[21] Mohanty, R. K.: An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients. Appl. Math. Comput. 165 (2005), 229-236. | DOI | MR | Zbl
[22] Mohebbi, A., Dehghan, M.: High order compact solution of the one-space-dimensional linear hyperbolic equation. Numer. Methods Partial Differential Equations 24 (2008), 1222-1235. | DOI | MR | Zbl
[23] Petersdorff, T. V., Schwab, C.: Wavelet approximation for first kind integral equations on polygons. Numer. Math. 74 (1996), 479-516. | DOI | MR
[24] Quak, E.: Trigonometric wavelets for hermite interpolation. J. Math. Comput. 65 (1996), 683-722. | DOI | MR | Zbl
[25] Shamsi, M., Razzaghi, M.: Solution of Hallen's integral equation using multiwavelets. Comput. Phys. Comm. 168 (2005), 187-197. | DOI | Zbl
[26] Shan, Z., Du, Q.: Trigonometric wavelet method for some elliptic boundary value problems. J. Math. Anal. Appl. 344 (2008), 1105-1119. | DOI | MR | Zbl
[27] Twizell, E. H.: An explicit difference method for the wave equation with extended stability range. BIT 19 (1979), 378-383. | DOI | MR | Zbl