On an algorithm for testing T4 solvability of max-plus interval systems
Kybernetika, Tome 48 (2012) no. 5, pp. 924-938 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we shall deal with the solvability of interval systems of linear equations in max-plus algebra. Max-plus algebra is an algebraic structure in which classical addition and multiplication are replaced by $\oplus$ and $\otimes$, where $a\oplus b=\max\{a,b\}$, $a\otimes b=a+b$. The notation ${\mathbb A}\otimes x={\mathbb b}$ represents an interval system of linear equations, where ${\mathbb A}=[\overline{b},\overline{A}]$ and ${\mathbb b}=[\underline{b},\overline{b}]$ are given interval matrix and interval vector, respectively. We can define several types of solvability of interval systems. In this paper, we define the T4 solvability and give an algorithm for checking the T4 solvability.
In this paper, we shall deal with the solvability of interval systems of linear equations in max-plus algebra. Max-plus algebra is an algebraic structure in which classical addition and multiplication are replaced by $\oplus$ and $\otimes$, where $a\oplus b=\max\{a,b\}$, $a\otimes b=a+b$. The notation ${\mathbb A}\otimes x={\mathbb b}$ represents an interval system of linear equations, where ${\mathbb A}=[\overline{b},\overline{A}]$ and ${\mathbb b}=[\underline{b},\overline{b}]$ are given interval matrix and interval vector, respectively. We can define several types of solvability of interval systems. In this paper, we define the T4 solvability and give an algorithm for checking the T4 solvability.
Classification : 15A06, 65G30
Keywords: max-plus algebra; interval system; T4 vector; T4 solvability
@article{KYB_2012_48_5_a6,
     author = {My\v{s}kov\'a, Helena},
     title = {On an algorithm for testing {T4} solvability of max-plus interval systems},
     journal = {Kybernetika},
     pages = {924--938},
     year = {2012},
     volume = {48},
     number = {5},
     mrnumber = {3086860},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a6/}
}
TY  - JOUR
AU  - Myšková, Helena
TI  - On an algorithm for testing T4 solvability of max-plus interval systems
JO  - Kybernetika
PY  - 2012
SP  - 924
EP  - 938
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a6/
LA  - en
ID  - KYB_2012_48_5_a6
ER  - 
%0 Journal Article
%A Myšková, Helena
%T On an algorithm for testing T4 solvability of max-plus interval systems
%J Kybernetika
%D 2012
%P 924-938
%V 48
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a6/
%G en
%F KYB_2012_48_5_a6
Myšková, Helena. On an algorithm for testing T4 solvability of max-plus interval systems. Kybernetika, Tome 48 (2012) no. 5, pp. 924-938. http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a6/

[1] Berežný, Š., Plavka, J.: Efficient algorithm for el-parametric eigenvalue-eigenvector problem in fuzzy algebra. In: AEI'2008 FEI TU, Košice 2008, pp. 53-57.

[2] Cechlárová, K.: Solutions of interval systems in max-plus algebra. In: Proc. of SOR 2001 (V. Rupnik, L. Zadnik-stirn, and S. Drobne, eds.), Preddvor, pp. 321-326. | MR

[3] K.Cechlárová, Cuninghame-Green, R. A.: Interval systems of max-separable linear equations. Linear Algebra Appl. 340 (2002), 215-224. | MR | Zbl

[4] Cuninghame-Green, R. A.: Minimax Algebra. Lecture Notes in Econom. and Math. Systems 1966, Springer, Berlin 1979. | MR | Zbl

[5] Gavalec, M., Plavka, J.: Monotone interval eigenproblem in max-min algebra. Kybernetika 43 (2010), 3, 387-396. | MR | Zbl

[6] Kreinovich, J., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity of Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht 1998.

[7] Myšková, H.: Interval systems of max-separable linear equations. Linear Algebra Appl. 403 (2005), 263-272. | MR | Zbl

[8] Myšková, H.: Control solvability of interval systems of max-separable linear equations. Linear Algebra Appl. 416 (2006), 215-223. | MR | Zbl

[9] Myšková, H.: Solvability of interval systems in fuzzy algebra. In: Proc. 15th Internacional Scientific Conference on Mathematical Methods in Economics and Industry, Herĺany 2007, pp. 153-157.

[10] Nachtigall, K.: Powers of matrices over an extremal algebras with applications to periodic graphs. Math. Methods Oper. Res. 46 (1997), 87-102. | DOI | MR

[11] al., G. J. Oldser et: Course notes: Max-algebra aproach to discrete event systems. In: Algebres Max-Plus et Applications an Informatique et Automatique. INRIA 1998, pp. 147-196.

[12] Plavka, J.: On the $O(n^3)$ algorithm for checking the strong robustness of interval fuzzy matrices. Discrete Appl. Math. 160 (2012), 640-647. | DOI | MR

[13] Rohn, J.: Systems of Interval Linear Equations and Inequalities (Rectangular Case). Technical Report No. 875, Institute of Computer Science, Academy of Sciences of the Czech Republic 2002.

[14] Rohn, J.: Complexity of some linear problems with interval data. Reliable Comput. 3 (1997), 315-323. | DOI | MR | Zbl

[15] Zimmermann, K.: Extremální algebra. Ekonomicko-matematická laboratoř Ekonomického ústavu ČSAV, Praha 1976.