Keywords: max-plus algebra; interval system; T4 vector; T4 solvability
@article{KYB_2012_48_5_a6,
author = {My\v{s}kov\'a, Helena},
title = {On an algorithm for testing {T4} solvability of max-plus interval systems},
journal = {Kybernetika},
pages = {924--938},
year = {2012},
volume = {48},
number = {5},
mrnumber = {3086860},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a6/}
}
Myšková, Helena. On an algorithm for testing T4 solvability of max-plus interval systems. Kybernetika, Tome 48 (2012) no. 5, pp. 924-938. http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a6/
[1] Berežný, Š., Plavka, J.: Efficient algorithm for el-parametric eigenvalue-eigenvector problem in fuzzy algebra. In: AEI'2008 FEI TU, Košice 2008, pp. 53-57.
[2] Cechlárová, K.: Solutions of interval systems in max-plus algebra. In: Proc. of SOR 2001 (V. Rupnik, L. Zadnik-stirn, and S. Drobne, eds.), Preddvor, pp. 321-326. | MR
[3] K.Cechlárová, Cuninghame-Green, R. A.: Interval systems of max-separable linear equations. Linear Algebra Appl. 340 (2002), 215-224. | MR | Zbl
[4] Cuninghame-Green, R. A.: Minimax Algebra. Lecture Notes in Econom. and Math. Systems 1966, Springer, Berlin 1979. | MR | Zbl
[5] Gavalec, M., Plavka, J.: Monotone interval eigenproblem in max-min algebra. Kybernetika 43 (2010), 3, 387-396. | MR | Zbl
[6] Kreinovich, J., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity of Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht 1998.
[7] Myšková, H.: Interval systems of max-separable linear equations. Linear Algebra Appl. 403 (2005), 263-272. | MR | Zbl
[8] Myšková, H.: Control solvability of interval systems of max-separable linear equations. Linear Algebra Appl. 416 (2006), 215-223. | MR | Zbl
[9] Myšková, H.: Solvability of interval systems in fuzzy algebra. In: Proc. 15th Internacional Scientific Conference on Mathematical Methods in Economics and Industry, Herĺany 2007, pp. 153-157.
[10] Nachtigall, K.: Powers of matrices over an extremal algebras with applications to periodic graphs. Math. Methods Oper. Res. 46 (1997), 87-102. | DOI | MR
[11] al., G. J. Oldser et: Course notes: Max-algebra aproach to discrete event systems. In: Algebres Max-Plus et Applications an Informatique et Automatique. INRIA 1998, pp. 147-196.
[12] Plavka, J.: On the $O(n^3)$ algorithm for checking the strong robustness of interval fuzzy matrices. Discrete Appl. Math. 160 (2012), 640-647. | DOI | MR
[13] Rohn, J.: Systems of Interval Linear Equations and Inequalities (Rectangular Case). Technical Report No. 875, Institute of Computer Science, Academy of Sciences of the Czech Republic 2002.
[14] Rohn, J.: Complexity of some linear problems with interval data. Reliable Comput. 3 (1997), 315-323. | DOI | MR | Zbl
[15] Zimmermann, K.: Extremální algebra. Ekonomicko-matematická laboratoř Ekonomického ústavu ČSAV, Praha 1976.