Keywords: Löwner–John ellipse; zonotope; Goffin's algorithm; ellipsoid method
@article{KYB_2012_48_5_a4,
author = {\v{C}ern\'y, Michal},
title = {Goffin's algorithm for zonotopes},
journal = {Kybernetika},
pages = {890--906},
year = {2012},
volume = {48},
number = {5},
mrnumber = {3086858},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a4/}
}
Černý, Michal. Goffin's algorithm for zonotopes. Kybernetika, Tome 48 (2012) no. 5, pp. 890-906. http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a4/
[1] Avis, D., Fukuda, K.: Reverse search for enumeration. Disc. Appl. Math. 65 (1996), 21-46. | DOI | MR | Zbl
[2] Bland, R. G., Goldfarb, D., Todd, M. J.: The ellipsoid method: a survey. Oper. Res. 29 (1981), 1039-1091. | DOI | MR | Zbl
[3] Buck, R. C.: Partion of space. Amer. Math. Monthly 50 (1943), 541-544. | DOI | MR
[4] Černý, M., Antoch, J., Hladík, M.: On the Possibilistic Approach to Linear Regression Models Involving Uncertain, Indeterminate or Interval Data. Technical Report, Department of Econometrics, University of Economics, Prague 2011. http://nb.vse.cz/ cernym/plr.pdf.
[5] Ferrez, J.-A., Fukuda, K., Liebling, T.: Solving the fixed rank convex quadratic maximization in binary variables by a parallel zonotope construction algorithm. Europ. J. Oper. Res. 166 (2005), 35-50. | DOI | MR | Zbl
[6] Goffin, J.-L.: Variable metric relaxation methods. Part II: The ellipsoid method. Math. Programming 30 (1984), 147-162. | DOI | MR
[7] Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer Verlag, Berlin 1993. | MR | Zbl
[8] Guibas, L. J., Nguyen, A., Zhang, L.: Zonotopes as bounding volumes. In: Proc. Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Pennsylvania 2003, pp. 803-812. | MR | Zbl
[9] John, F.: Extremum problems with inequalities as subsidiary conditions. In: Fritz John, Collected Papers (J. Moser, ed.), Volume 2. Birkhäuser, Boston 1985, pp. 543-560. | MR | Zbl
[10] Schön, S., Kutterer, H.: Using zonotopes for overestimation-free interval least-squares - some geodetic applications. Reliable Computing 11 (2005), 137-155. | DOI | MR | Zbl
[11] Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York 2000. | MR | Zbl
[12] Yudin, D. B., Nemirovski, A. S.: Informational complexity and efficient methods for the solution of convex extremal problems. Matekon 13 (3) (1977), 25-45.
[13] Zaslavsky, T.: Facing up to arrangements: face-count formulas for partitions of space by hyperplanes. Mem. Amer. Math. Soc. 154 (1975), 102 pp. | MR | Zbl
[14] Ziegler, G.: Lectures on Polytopes. Springer Verlag, Berlin 2004. | MR | Zbl