Goffin's algorithm for zonotopes
Kybernetika, Tome 48 (2012) no. 5, pp. 890-906 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The Löwner-John ellipse of a full-dimensional bounded convex set is a circumscribed ellipse with the property that if we shrink it by the factor $n$ (where $n$ is dimension), we obtain an inscribed ellipse. Goffin's algorithm constructs, in polynomial time, a tight approximation of the Löwner-John ellipse of a polyhedron given by facet description. In this text we adapt the algorithm for zonotopes given by generator descriptions. We show that the adapted version works in time polynomial in the size of the generator description (which may be superpolynomially shorter than the facet description).
The Löwner-John ellipse of a full-dimensional bounded convex set is a circumscribed ellipse with the property that if we shrink it by the factor $n$ (where $n$ is dimension), we obtain an inscribed ellipse. Goffin's algorithm constructs, in polynomial time, a tight approximation of the Löwner-John ellipse of a polyhedron given by facet description. In this text we adapt the algorithm for zonotopes given by generator descriptions. We show that the adapted version works in time polynomial in the size of the generator description (which may be superpolynomially shorter than the facet description).
Classification : 52B12, 52B55, 68U05, 90C57
Keywords: Löwner–John ellipse; zonotope; Goffin's algorithm; ellipsoid method
@article{KYB_2012_48_5_a4,
     author = {\v{C}ern\'y, Michal},
     title = {Goffin's algorithm for zonotopes},
     journal = {Kybernetika},
     pages = {890--906},
     year = {2012},
     volume = {48},
     number = {5},
     mrnumber = {3086858},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a4/}
}
TY  - JOUR
AU  - Černý, Michal
TI  - Goffin's algorithm for zonotopes
JO  - Kybernetika
PY  - 2012
SP  - 890
EP  - 906
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a4/
LA  - en
ID  - KYB_2012_48_5_a4
ER  - 
%0 Journal Article
%A Černý, Michal
%T Goffin's algorithm for zonotopes
%J Kybernetika
%D 2012
%P 890-906
%V 48
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a4/
%G en
%F KYB_2012_48_5_a4
Černý, Michal. Goffin's algorithm for zonotopes. Kybernetika, Tome 48 (2012) no. 5, pp. 890-906. http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a4/

[1] Avis, D., Fukuda, K.: Reverse search for enumeration. Disc. Appl. Math. 65 (1996), 21-46. | DOI | MR | Zbl

[2] Bland, R. G., Goldfarb, D., Todd, M. J.: The ellipsoid method: a survey. Oper. Res. 29 (1981), 1039-1091. | DOI | MR | Zbl

[3] Buck, R. C.: Partion of space. Amer. Math. Monthly 50 (1943), 541-544. | DOI | MR

[4] Černý, M., Antoch, J., Hladík, M.: On the Possibilistic Approach to Linear Regression Models Involving Uncertain, Indeterminate or Interval Data. Technical Report, Department of Econometrics, University of Economics, Prague 2011. http://nb.vse.cz/ cernym/plr.pdf.

[5] Ferrez, J.-A., Fukuda, K., Liebling, T.: Solving the fixed rank convex quadratic maximization in binary variables by a parallel zonotope construction algorithm. Europ. J. Oper. Res. 166 (2005), 35-50. | DOI | MR | Zbl

[6] Goffin, J.-L.: Variable metric relaxation methods. Part II: The ellipsoid method. Math. Programming 30 (1984), 147-162. | DOI | MR

[7] Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer Verlag, Berlin 1993. | MR | Zbl

[8] Guibas, L. J., Nguyen, A., Zhang, L.: Zonotopes as bounding volumes. In: Proc. Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Pennsylvania 2003, pp. 803-812. | MR | Zbl

[9] John, F.: Extremum problems with inequalities as subsidiary conditions. In: Fritz John, Collected Papers (J. Moser, ed.), Volume 2. Birkhäuser, Boston 1985, pp. 543-560. | MR | Zbl

[10] Schön, S., Kutterer, H.: Using zonotopes for overestimation-free interval least-squares - some geodetic applications. Reliable Computing 11 (2005), 137-155. | DOI | MR | Zbl

[11] Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York 2000. | MR | Zbl

[12] Yudin, D. B., Nemirovski, A. S.: Informational complexity and efficient methods for the solution of convex extremal problems. Matekon 13 (3) (1977), 25-45.

[13] Zaslavsky, T.: Facing up to arrangements: face-count formulas for partitions of space by hyperplanes. Mem. Amer. Math. Soc. 154 (1975), 102 pp. | MR | Zbl

[14] Ziegler, G.: Lectures on Polytopes. Springer Verlag, Berlin 2004. | MR | Zbl