Bounds of the matrix eigenvalues and its exponential by Lyapunov equation
Kybernetika, Tome 48 (2012) no. 5, pp. 865-878 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We are concerned with bounds of the matrix eigenvalues and its exponential. Combining the Lyapunov equation with the weighted logarithmic matrix norm technique, four sequences are presented to locate eigenvalues of a matrix. Based on the relations between the real parts of the eigenvalues and the weighted logarithmic matrix norms, we derive both lower and upper bounds of the matrix exponential, which complement and improve the existing results in the literature. Some numerical examples are also given.
We are concerned with bounds of the matrix eigenvalues and its exponential. Combining the Lyapunov equation with the weighted logarithmic matrix norm technique, four sequences are presented to locate eigenvalues of a matrix. Based on the relations between the real parts of the eigenvalues and the weighted logarithmic matrix norms, we derive both lower and upper bounds of the matrix exponential, which complement and improve the existing results in the literature. Some numerical examples are also given.
Classification : 15A18, 15A60, 34D20
Keywords: Lyapunov equation; weighted logarithmic matrix norm; location of eigenvalues; bounds of the matrix exponential
@article{KYB_2012_48_5_a2,
     author = {Hu, Guang-Da and Mitsui, Taketomo},
     title = {Bounds of the matrix eigenvalues and its exponential by {Lyapunov} equation},
     journal = {Kybernetika},
     pages = {865--878},
     year = {2012},
     volume = {48},
     number = {5},
     mrnumber = {3086856},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a2/}
}
TY  - JOUR
AU  - Hu, Guang-Da
AU  - Mitsui, Taketomo
TI  - Bounds of the matrix eigenvalues and its exponential by Lyapunov equation
JO  - Kybernetika
PY  - 2012
SP  - 865
EP  - 878
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a2/
LA  - en
ID  - KYB_2012_48_5_a2
ER  - 
%0 Journal Article
%A Hu, Guang-Da
%A Mitsui, Taketomo
%T Bounds of the matrix eigenvalues and its exponential by Lyapunov equation
%J Kybernetika
%D 2012
%P 865-878
%V 48
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a2/
%G en
%F KYB_2012_48_5_a2
Hu, Guang-Da; Mitsui, Taketomo. Bounds of the matrix eigenvalues and its exponential by Lyapunov equation. Kybernetika, Tome 48 (2012) no. 5, pp. 865-878. http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a2/

[1] Bernstein, D. S.: Matrix Mathematics. Princeton University Press, Princeton and Oxford 2005. | MR | Zbl

[2] Dekker, K., Verwer, J. G.: Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations. North-Holland, Amsterdam 1984. | MR | Zbl

[3] Desoer, C. A., Vidyasagar, M.: Feedback Systems: Input-output Properties. Academic Press, New York 1975. | MR | Zbl

[4] Golub, G. H., Loan, C. F. Van: Matrix Computations. Third edition. Johns Hopkins University Press, Baltimore 1996. | MR

[5] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge 1985. | MR | Zbl

[6] Horn, R. A., Johnson, C. R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge 1991. | MR | Zbl

[7] Hu, G. Da, Hu, G. Di: A relation between the weighted logarithmic norm of matrix and Lyapunov equation. BIT 40 (2000), 506-510. | MR

[8] Hu, G. Da, Liu, M. Z.: The weighted logarithmic matrix norm and bounds of the matrix exponential. Linear Algebra Appl. 390 (2004), 145-154. | MR | Zbl

[9] Hu, G. Da, Liu, M. Z.: Properties of the weighted logarithmic matrix norms. IMA. J. Math. Control Inform. 25 (2008), 75-84. | MR | Zbl

[10] Hu, G. Da, Zhu, Q.: Bounds of modulus of eigenvalues based on Stein equation. Kybernetika 46 (2010), 655-664. | MR | Zbl

[11] Kågström, B.: Bounds and perturbation bounds for the matrix exponential. BIT 17 (1977), 39-57. | DOI | MR | Zbl

[12] Lancaster, P., Tismenetsky, M.: The Theory of Matrices with Applications. Academic Press Inc. Orlando 1985. | MR

[13] Pao, C. V.: Logarithmic derivatives of a square matrix. Linear Algebra Appl. 7 (1973), 159-164. | DOI | MR | Zbl

[14] Rugh, W. J.: Linear System Theory. Prentice Hall, Upper Saddle River, New Jersey 1996. | MR | Zbl

[15] Ström, T.: On logarithmic norms. SIAM J. Numer. Anal. 12 (1975), 741-753. | DOI | MR | Zbl