Bias correction on censored least squares regression models
Kybernetika, Tome 48 (2012) no. 5, pp. 1045-1063 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper proposes a bias reduction of the coefficients' estimator for linear regression models when observations are randomly censored and the error distribution is unknown. The proposed bias correction is applied to the weighted least squares estimator proposed by Stute [28] [W. Stute: Consistent estimation under random censorship when covariables are present. J. Multivariate Anal. 45 (1993), 89-103.], and it is based on model-based bootstrap resampling techniques that also allow us to work with censored data. Our bias-corrected estimator proposal is evaluated and its behavior assessed in simulation studies concluding that both the bias and the mean square error are reduced with the new proposal.
This paper proposes a bias reduction of the coefficients' estimator for linear regression models when observations are randomly censored and the error distribution is unknown. The proposed bias correction is applied to the weighted least squares estimator proposed by Stute [28] [W. Stute: Consistent estimation under random censorship when covariables are present. J. Multivariate Anal. 45 (1993), 89-103.], and it is based on model-based bootstrap resampling techniques that also allow us to work with censored data. Our bias-corrected estimator proposal is evaluated and its behavior assessed in simulation studies concluding that both the bias and the mean square error are reduced with the new proposal.
Classification : 62F40, 62N01
Keywords: bias; censoring; least squares; linear regression; Kaplan–Meier estimator
@article{KYB_2012_48_5_a14,
     author = {Orbe, Jesus and N\'u\~nez-Ant\'on, Vicente},
     title = {Bias correction on censored least squares regression models},
     journal = {Kybernetika},
     pages = {1045--1063},
     year = {2012},
     volume = {48},
     number = {5},
     mrnumber = {3086868},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a14/}
}
TY  - JOUR
AU  - Orbe, Jesus
AU  - Núñez-Antón, Vicente
TI  - Bias correction on censored least squares regression models
JO  - Kybernetika
PY  - 2012
SP  - 1045
EP  - 1063
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a14/
LA  - en
ID  - KYB_2012_48_5_a14
ER  - 
%0 Journal Article
%A Orbe, Jesus
%A Núñez-Antón, Vicente
%T Bias correction on censored least squares regression models
%J Kybernetika
%D 2012
%P 1045-1063
%V 48
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a14/
%G en
%F KYB_2012_48_5_a14
Orbe, Jesus; Núñez-Antón, Vicente. Bias correction on censored least squares regression models. Kybernetika, Tome 48 (2012) no. 5, pp. 1045-1063. http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a14/

[1] Akritas, M. G.: Bootstrapping the Kaplan-Meier estimator. J. Amer. Statist. Assoc. 81 (1986), 1032-1038. | MR | Zbl

[2] Altman, D. G., Stavola, B. L. De, Love, S. B., Stepniewska, K. A.: Review of survival analyses published in cancer journals. British J. Cancer. 72 (1985), 511-518. | DOI

[3] Buckley, J. J., James, I. R.: Linear regression with censored data. Biometrika 66 (1979), 429-436. | DOI | Zbl

[4] Chatterjee, S., McLeish, D. L.: Fitting linear regression models to censored data by least squares and maximum likelihood methods. Comm. Statist. Theory Methods 15 (1986), 3227-3243. | DOI | MR | Zbl

[5] Chen, Y. Y., Hollander, M., Langberg, N. A.: Small sample results for the Kaplan-Meier estimator. J. Amer. Statist. Assoc. 77 (1982), 141-144. | DOI | MR | Zbl

[6] Cox, D. R.: Regression models and life-tables. J. R. Stat. Soc. Ser. B. 34 (1972), 187-220. | MR | Zbl

[7] Cox, D. R.: Partial likelihood. Biometrika 62 (1975), 269-276. | DOI | MR | Zbl

[8] Davison, A. C., Hinkley, D. V.: Bootstrap Methods and Their Application. Cambridge University Press, Cambridge 1997. | MR | Zbl

[9] Efron, B.: The two sample problem with censored data. In: Proc. 5th Berkeley Symposium 4 (1967), pp. 831-853.

[10] Efron, B.: Censored data and the bootstrap. J. Amer. Statist. Assoc. 76 (1981), 312-319. | DOI | MR | Zbl

[11] Efron, B., Tibshirani, R. J.: An Introduction to the Bootstrap. Chapman and Hall, New York 1993. | MR | Zbl

[12] Gill, R. D.: Censoring and Stochastics Integrals. Math. Centre Tracts 124, Math. Centrum, Amsterdam 1980. | MR

[13] Heller, G., Simonoff, J. S.: A comparison of estimators for regression with a censored response variable. Biometrika 77 (1990), 515-520. | DOI | MR

[14] Jin, Z., Lin, D., Wei, L. J., Ying, Z.: Rank-based inference for the accelerated failure time model. Biometrika 90 (2003), 341-353. | DOI | MR | Zbl

[15] Kaplan, E. L., Meier, P.: Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc. 53 (1958), 457-481. | DOI | MR | Zbl

[16] Koul, H., Susarla, V., Van-Ryzin, J.: Regression analysis with randomly right-censored data. Ann. Statist. 9 (1981), 1279-1288. | DOI | MR | Zbl

[17] Lai, T. L., Ying, Z.: Linear rank statistics in regression analysis with censored or truncated data. J. Multivariate Anal. 40 (1992), 13-45. | DOI | MR | Zbl

[18] Leurgans, S.: Linear models, random censoring and synthetic data. Biometrika 74 (1987), 301-309. | DOI | MR | Zbl

[19] Mauro, D.: A combinatoric approach to the Kaplan-Meier estimator. Ann. Statist. 13 (1985), 142-149. | DOI | MR | Zbl

[20] Miller, R. G.: Least squares regression with censored data. Biometrika 63 (1976), 449-464. | DOI | MR | Zbl

[21] Miller, R. G., Halpern, J.: Regression with censored data. Biometrika 69 (1982), 521-531. | DOI | MR | Zbl

[22] Orbe, J., Ferreira, E., Núñez-Antón, V.: Censored partial regression. Biostatistics 4 (2003), 109-121. | DOI | Zbl

[23] Reid, N.: Estimating the median survival time. Biometrika 68 (1981), 601-608. | DOI | MR | Zbl

[24] Reid, N.: A conversation with Sir David Cox. Statist. Sci. 9 (1994), 439-455. | DOI | MR | Zbl

[25] Ritov, Y.: Estimation in a linear regression model with censored data. Ann. Statist. 18 (1990), 303-328. | DOI | MR | Zbl

[26] Schmee, J., Hahn, G. J.: A simple method for regression analysis with censored data (with discussion). Technometrics 21 (1979), 417-434. | DOI

[27] Stare, J., Heinzl, F., Harrel, F.: On the use of Buckley and James least squares regression for survival data. In: New Approaches in Applied Statistics (A. Ferligoj and A. Mrvar, eds.), Metodološki zvezki 16, Ljubljana: Eslovenia, 2000, pp. 125-134.

[28] Stute, W.: Consistent estimation under random censorship when covariables are present. J. Multivariate Anal. 45 (1993), 89-103. | DOI | MR | Zbl

[29] Stute, W.: The bias of Kaplan-Meier integrals. Scand. J. Stat. 21 (1994), 475-484. | MR | Zbl

[30] Stute, W.: Improved estimation under random censorship. Comm. Statist. Theory Methods 23 (1994), 2671-2682. | DOI | MR | Zbl

[31] Stute, W.: Distributional convergence under random censorship when covariables are present. Scand. J. Stat. 23 (1996), 461-471. | MR | Zbl

[32] Stute, W.: The jackknife estimate of variance of a Kaplan-Meier integral. Ann. Statist. 24 (1996), 2679-2704. | DOI | MR | Zbl

[33] Stute, W.: Nonlinear censored regression. Statist. Sinica 9 (1999), 1089-1102. | MR | Zbl

[34] Stute, W., Wang, J. L.: The jackknife estimate of a Kaplan-Meier integral. Biometrika 81 (1994), 602-606. | MR | Zbl

[35] Tsiatis, A. A.: Estimating regression parameters using linear rank tests for censored data. Ann. Statist. 18 (1990), 354-372. | DOI | MR | Zbl

[36] Wei, L. J.: The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Stat. Med. 11 (1992), 1871-1879. | DOI

[37] Wellner, J. A.: A heavy censoring limit theorem for the product limit estimator. Ann. Statist. 13 (1985), 150-162. | DOI | MR | Zbl

[38] Zhou, M.: Two-sided bias bound of the Kaplan-Meier estimator. Probab. Theory and Related Fields 79 (1988), 165-173. | MR | Zbl