Keywords: bias; censoring; least squares; linear regression; Kaplan–Meier estimator
@article{KYB_2012_48_5_a14,
author = {Orbe, Jesus and N\'u\~nez-Ant\'on, Vicente},
title = {Bias correction on censored least squares regression models},
journal = {Kybernetika},
pages = {1045--1063},
year = {2012},
volume = {48},
number = {5},
mrnumber = {3086868},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a14/}
}
Orbe, Jesus; Núñez-Antón, Vicente. Bias correction on censored least squares regression models. Kybernetika, Tome 48 (2012) no. 5, pp. 1045-1063. http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a14/
[1] Akritas, M. G.: Bootstrapping the Kaplan-Meier estimator. J. Amer. Statist. Assoc. 81 (1986), 1032-1038. | MR | Zbl
[2] Altman, D. G., Stavola, B. L. De, Love, S. B., Stepniewska, K. A.: Review of survival analyses published in cancer journals. British J. Cancer. 72 (1985), 511-518. | DOI
[3] Buckley, J. J., James, I. R.: Linear regression with censored data. Biometrika 66 (1979), 429-436. | DOI | Zbl
[4] Chatterjee, S., McLeish, D. L.: Fitting linear regression models to censored data by least squares and maximum likelihood methods. Comm. Statist. Theory Methods 15 (1986), 3227-3243. | DOI | MR | Zbl
[5] Chen, Y. Y., Hollander, M., Langberg, N. A.: Small sample results for the Kaplan-Meier estimator. J. Amer. Statist. Assoc. 77 (1982), 141-144. | DOI | MR | Zbl
[6] Cox, D. R.: Regression models and life-tables. J. R. Stat. Soc. Ser. B. 34 (1972), 187-220. | MR | Zbl
[7] Cox, D. R.: Partial likelihood. Biometrika 62 (1975), 269-276. | DOI | MR | Zbl
[8] Davison, A. C., Hinkley, D. V.: Bootstrap Methods and Their Application. Cambridge University Press, Cambridge 1997. | MR | Zbl
[9] Efron, B.: The two sample problem with censored data. In: Proc. 5th Berkeley Symposium 4 (1967), pp. 831-853.
[10] Efron, B.: Censored data and the bootstrap. J. Amer. Statist. Assoc. 76 (1981), 312-319. | DOI | MR | Zbl
[11] Efron, B., Tibshirani, R. J.: An Introduction to the Bootstrap. Chapman and Hall, New York 1993. | MR | Zbl
[12] Gill, R. D.: Censoring and Stochastics Integrals. Math. Centre Tracts 124, Math. Centrum, Amsterdam 1980. | MR
[13] Heller, G., Simonoff, J. S.: A comparison of estimators for regression with a censored response variable. Biometrika 77 (1990), 515-520. | DOI | MR
[14] Jin, Z., Lin, D., Wei, L. J., Ying, Z.: Rank-based inference for the accelerated failure time model. Biometrika 90 (2003), 341-353. | DOI | MR | Zbl
[15] Kaplan, E. L., Meier, P.: Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc. 53 (1958), 457-481. | DOI | MR | Zbl
[16] Koul, H., Susarla, V., Van-Ryzin, J.: Regression analysis with randomly right-censored data. Ann. Statist. 9 (1981), 1279-1288. | DOI | MR | Zbl
[17] Lai, T. L., Ying, Z.: Linear rank statistics in regression analysis with censored or truncated data. J. Multivariate Anal. 40 (1992), 13-45. | DOI | MR | Zbl
[18] Leurgans, S.: Linear models, random censoring and synthetic data. Biometrika 74 (1987), 301-309. | DOI | MR | Zbl
[19] Mauro, D.: A combinatoric approach to the Kaplan-Meier estimator. Ann. Statist. 13 (1985), 142-149. | DOI | MR | Zbl
[20] Miller, R. G.: Least squares regression with censored data. Biometrika 63 (1976), 449-464. | DOI | MR | Zbl
[21] Miller, R. G., Halpern, J.: Regression with censored data. Biometrika 69 (1982), 521-531. | DOI | MR | Zbl
[22] Orbe, J., Ferreira, E., Núñez-Antón, V.: Censored partial regression. Biostatistics 4 (2003), 109-121. | DOI | Zbl
[23] Reid, N.: Estimating the median survival time. Biometrika 68 (1981), 601-608. | DOI | MR | Zbl
[24] Reid, N.: A conversation with Sir David Cox. Statist. Sci. 9 (1994), 439-455. | DOI | MR | Zbl
[25] Ritov, Y.: Estimation in a linear regression model with censored data. Ann. Statist. 18 (1990), 303-328. | DOI | MR | Zbl
[26] Schmee, J., Hahn, G. J.: A simple method for regression analysis with censored data (with discussion). Technometrics 21 (1979), 417-434. | DOI
[27] Stare, J., Heinzl, F., Harrel, F.: On the use of Buckley and James least squares regression for survival data. In: New Approaches in Applied Statistics (A. Ferligoj and A. Mrvar, eds.), Metodološki zvezki 16, Ljubljana: Eslovenia, 2000, pp. 125-134.
[28] Stute, W.: Consistent estimation under random censorship when covariables are present. J. Multivariate Anal. 45 (1993), 89-103. | DOI | MR | Zbl
[29] Stute, W.: The bias of Kaplan-Meier integrals. Scand. J. Stat. 21 (1994), 475-484. | MR | Zbl
[30] Stute, W.: Improved estimation under random censorship. Comm. Statist. Theory Methods 23 (1994), 2671-2682. | DOI | MR | Zbl
[31] Stute, W.: Distributional convergence under random censorship when covariables are present. Scand. J. Stat. 23 (1996), 461-471. | MR | Zbl
[32] Stute, W.: The jackknife estimate of variance of a Kaplan-Meier integral. Ann. Statist. 24 (1996), 2679-2704. | DOI | MR | Zbl
[33] Stute, W.: Nonlinear censored regression. Statist. Sinica 9 (1999), 1089-1102. | MR | Zbl
[34] Stute, W., Wang, J. L.: The jackknife estimate of a Kaplan-Meier integral. Biometrika 81 (1994), 602-606. | MR | Zbl
[35] Tsiatis, A. A.: Estimating regression parameters using linear rank tests for censored data. Ann. Statist. 18 (1990), 354-372. | DOI | MR | Zbl
[36] Wei, L. J.: The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Stat. Med. 11 (1992), 1871-1879. | DOI
[37] Wellner, J. A.: A heavy censoring limit theorem for the product limit estimator. Ann. Statist. 13 (1985), 150-162. | DOI | MR | Zbl
[38] Zhou, M.: Two-sided bias bound of the Kaplan-Meier estimator. Probab. Theory and Related Fields 79 (1988), 165-173. | MR | Zbl