Keywords: zero-sum stopping game; equality of the upper and lower value functions; contractive operator; hitting time; stationary strategy
@article{KYB_2012_48_5_a13,
author = {Cavazos-Cadena, Rolando and Hern\'andez-Hern\'andez, Daniel},
title = {Nash {Equilibria} in a class of {Markov} stopping games},
journal = {Kybernetika},
pages = {1027--1044},
year = {2012},
volume = {48},
number = {5},
mrnumber = {3086867},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a13/}
}
Cavazos-Cadena, Rolando; Hernández-Hernández, Daniel. Nash Equilibria in a class of Markov stopping games. Kybernetika, Tome 48 (2012) no. 5, pp. 1027-1044. http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a13/
[1] Altman, E., Shwartz, A.: Constrained Markov Games: Nash Equilibria. In: Annals of Dynamic Games (V. Gaitsgory, J. Filar and K. Mizukami, eds.) 6 (2000), pp. 213-221, Birkhauser, Boston. | MR | Zbl
[2] Atar, R., Budhiraja, A.: A stochastic differential game for the inhomogeneous infinty-Laplace equation. Ann. Probab. 2 (2010), 498-531. | DOI | MR
[3] Bielecki, T., Hernández-Hernández, D., Pliska, S. R.: Risk sensitive control of finite state Markov chains in discrete time, with applications to portfolio management. Mathe. Methods Oper. Res. 50 (1999), 167-188. | DOI | MR | Zbl
[4] Dynkin, E. B.: The optimum choice for the instance for stopping Markov process. Soviet. Math. Dokl. 4 (1963), 627-629.
[5] Kolokoltsov, V. N., Malafeyev, O. A.: Understanding Game Theory. World Scientific, Singapore 2010. | MR | Zbl
[6] Peskir, G.: On the American option problem. Math. Finance 15 (2010), 169-181. | DOI | MR | Zbl
[7] Peskir, G., Shiryaev, A.: Optimal Stopping and Free-Boundary Problems. Birkhauser, Boston 2010. | MR | Zbl
[8] Puterman, M.: Markov Decision Processes. Wiley, New York 1994. | MR | Zbl
[9] Shiryaev, A.: Optimal Stopping Rules. Springer, New York 1978. | MR | Zbl
[10] Sladký, K.: Ramsey Growth model under uncertainty. In: Proc. 27th International Conference Mathematical Methods in Economics (H. Brozová, ed.), Kostelec nad Černými lesy 2009, pp. 296-300.
[11] Sladký, K.: Risk-sensitive Ramsey Growth model. In: Proc. of 28th International Conference on Mathematical Methods in Economics (M. Houda and J. Friebelová, eds.) České Budějovice 2010.
[12] Shapley, L. S.: Stochastic games. Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 1095-1100. | DOI | MR | Zbl
[13] Wal, J. van der: Discounted Markov games: Successive approximation and stopping times. Internat. J. Game Theory 6 (1977), 11-22. | DOI | MR
[14] Wal, J. van der: Discounted Markov games: Generalized policy iteration method. J. Optim. Theory Appl. 25 (1978), 125-138. | DOI | MR
[15] White, D. J.: Real applications of Markov decision processes. Interfaces 15 (1985), 73-83. | DOI
[16] White, D. J.: Further real applications of Markov decision processes. Interfaces 18 (1988), 55-61. | DOI
[17] Zachrisson, L. E.: Markov games. In: Advances in Game Theory (M. Dresher, L. S.Shapley and A. W. Tucker, eds.), Princeton Univ. Press, Princeton 1964, pp. 211-253. | MR | Zbl