Keywords: moment estimation methods; spatial Cox point process; parametric inference
@article{KYB_2012_48_5_a12,
author = {Dvo\v{r}\'ak, Ji\v{r}{\'\i} and Proke\v{s}ov\'a, Michaela},
title = {Moment estimation methods for stationary spatial {Cox} processes - {A} comparison},
journal = {Kybernetika},
pages = {1007--1026},
year = {2012},
volume = {48},
number = {5},
mrnumber = {3086866},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a12/}
}
Dvořák, Jiří; Prokešová, Michaela. Moment estimation methods for stationary spatial Cox processes - A comparison. Kybernetika, Tome 48 (2012) no. 5, pp. 1007-1026. http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a12/
[1] Baddeley, A. J., Turner, R.: Practical maximum pseudolikelihood for spatial point processes. Aust. N. Z. J. Statist. 42 (2000), 283-322. | DOI | MR
[2] Baddeley, A. J., Turner, R.: Spatstat: an R package for analyzing spatial point patterns. J. Statist. Softw. 12 (2005), 1-42.
[3] Brix, A.: Generalized gamma measures and shot-noise Cox processes. Adv. in Appl. Probab. 31 (1999), 929-953. | DOI | MR | Zbl
[4] Cox, D. R.: Some statistical models related with series of events. J. Roy. Statist. Soc. Ser. B 17 (1955), 129-164. | MR
[5] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume 1: Elementary Theory and Methods. Second edition. Springer Verlag, New York 2003. | MR
[6] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume 2: General Theory and Structure. Second edition. Springer Verlag, New York 2008. | MR
[7] Diggle, P. J.: Statistical Analysis of Spatial Point Patterns. Academic Press, London 1983. | MR | Zbl
[8] Diggle, P. J.: Statistical Analysis of Spatial Point Patterns. Second edition. Oxford University Press, New York 2003. | MR | Zbl
[9] Dvořák, J., Prokešová, M.: Moment estimation methods for stationary spatial Cox processes - a simulation study. Preprint (2011), \url{ http://www.karlin.mff.cuni.cz/ dvorak/CoxEstimation/CoxEstimation_SimulationStudy.pdf}.
[10] Guan, Y.: A composite likelihood approach in fitting spatial point process models. J. Amer. Statist. Assoc. 101 (2006), 1502-1512. | DOI | MR | Zbl
[11] Guan, Y., Sherman, M.: On least squares fitting for stationary spatial point processes. J. Roy. Statist. Soc. Ser. B 69 (2007), 31-49. | DOI | MR
[12] Heinrich, L.: Minimum contrast estimates for parameters of spatial ergodic point processes. In: Trans. 11th Prague Conference on Random Processes, Information Theory and Statistical Decision Functions. Academic Publishing House, Prague 1992.
[13] Hellmund, G., Prokešová, M., Jensen, E. B. Vedel: Lévy-based Cox point processes. Adv. in Appl. Probab. 40 (2008), 603-629. | DOI | MR
[14] Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley and Sons, Chichester 2008. | MR | Zbl
[15] Jensen, A. T.: Statistical Inference for Doubly Stochastic Poisson Processes. Ph.D. Thesis, Department of Applied Mathematics and Statistics, University of Copenhagen 2005.
[16] Lindsay, B. G.: Composite likelihood methods. Contemp. Math. 80 (1988), 221-239. | DOI | MR | Zbl
[17] Matérn, B.: Doubly stochastic Poisson processes in the plane. In: Statistical Ecology. Volume 1. Pennsylvania State University Press, University Park 1971.
[18] Møller, J., Syversveen, A. R., Waagepetersen, R. P.: Log-Gaussian Cox processes. Scand. J. Statist. 25 (1998), 451-482. | DOI | MR
[19] Møller, J.: Shot noise Cox processes. Adv. in Appl. Probab. (SGSA) 35 (2003), 614-640. | DOI | MR
[20] Møller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Florida 2003.
[21] Møller, J., Waagepetersen, R. P.: Modern statistics for spatial point processes. Scand. J. Statist. 34 (2007), 643-684. | MR
[22] Prokešová, M., Jensen, E. B. Vedel: Asymptotic Palm likelihood theory for stationary spatial point processes. Accepted to Ann. Inst. Statist. Math. (2012).
[23] Tanaka, U., Ogata, Y., Stoyan, D.: Parameter estimation and model selection for Neyman-Scott point processes. Biometrical J. 49 (2007), 1-15. | MR