Moment estimation methods for stationary spatial Cox processes - A comparison
Kybernetika, Tome 48 (2012) no. 5, pp. 1007-1026 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the present paper we consider the problem of fitting parametric spatial Cox point process models. We concentrate on the moment estimation methods based on the second order characteristics of the point process in question. These methods represent a simulation-free faster-to-compute alternative to the computationally intense maximum likelihood estimation. We give an overview of the available methods, discuss their properties and applicability. Further we present results of a simulation study in which performance of these estimating methods was compared for planar point processes with different types and strength of clustering and inter-point interactions.
In the present paper we consider the problem of fitting parametric spatial Cox point process models. We concentrate on the moment estimation methods based on the second order characteristics of the point process in question. These methods represent a simulation-free faster-to-compute alternative to the computationally intense maximum likelihood estimation. We give an overview of the available methods, discuss their properties and applicability. Further we present results of a simulation study in which performance of these estimating methods was compared for planar point processes with different types and strength of clustering and inter-point interactions.
Classification : 60G55, 62M30
Keywords: moment estimation methods; spatial Cox point process; parametric inference
@article{KYB_2012_48_5_a12,
     author = {Dvo\v{r}\'ak, Ji\v{r}{\'\i} and Proke\v{s}ov\'a, Michaela},
     title = {Moment estimation methods for stationary spatial {Cox} processes - {A} comparison},
     journal = {Kybernetika},
     pages = {1007--1026},
     year = {2012},
     volume = {48},
     number = {5},
     mrnumber = {3086866},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a12/}
}
TY  - JOUR
AU  - Dvořák, Jiří
AU  - Prokešová, Michaela
TI  - Moment estimation methods for stationary spatial Cox processes - A comparison
JO  - Kybernetika
PY  - 2012
SP  - 1007
EP  - 1026
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a12/
LA  - en
ID  - KYB_2012_48_5_a12
ER  - 
%0 Journal Article
%A Dvořák, Jiří
%A Prokešová, Michaela
%T Moment estimation methods for stationary spatial Cox processes - A comparison
%J Kybernetika
%D 2012
%P 1007-1026
%V 48
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a12/
%G en
%F KYB_2012_48_5_a12
Dvořák, Jiří; Prokešová, Michaela. Moment estimation methods for stationary spatial Cox processes - A comparison. Kybernetika, Tome 48 (2012) no. 5, pp. 1007-1026. http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a12/

[1] Baddeley, A. J., Turner, R.: Practical maximum pseudolikelihood for spatial point processes. Aust. N. Z. J. Statist. 42 (2000), 283-322. | DOI | MR

[2] Baddeley, A. J., Turner, R.: Spatstat: an R package for analyzing spatial point patterns. J. Statist. Softw. 12 (2005), 1-42.

[3] Brix, A.: Generalized gamma measures and shot-noise Cox processes. Adv. in Appl. Probab. 31 (1999), 929-953. | DOI | MR | Zbl

[4] Cox, D. R.: Some statistical models related with series of events. J. Roy. Statist. Soc. Ser. B 17 (1955), 129-164. | MR

[5] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume 1: Elementary Theory and Methods. Second edition. Springer Verlag, New York 2003. | MR

[6] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume 2: General Theory and Structure. Second edition. Springer Verlag, New York 2008. | MR

[7] Diggle, P. J.: Statistical Analysis of Spatial Point Patterns. Academic Press, London 1983. | MR | Zbl

[8] Diggle, P. J.: Statistical Analysis of Spatial Point Patterns. Second edition. Oxford University Press, New York 2003. | MR | Zbl

[9] Dvořák, J., Prokešová, M.: Moment estimation methods for stationary spatial Cox processes - a simulation study. Preprint (2011), \url{ http://www.karlin.mff.cuni.cz/ dvorak/CoxEstimation/CoxEstimation_SimulationStudy.pdf}.

[10] Guan, Y.: A composite likelihood approach in fitting spatial point process models. J. Amer. Statist. Assoc. 101 (2006), 1502-1512. | DOI | MR | Zbl

[11] Guan, Y., Sherman, M.: On least squares fitting for stationary spatial point processes. J. Roy. Statist. Soc. Ser. B 69 (2007), 31-49. | DOI | MR

[12] Heinrich, L.: Minimum contrast estimates for parameters of spatial ergodic point processes. In: Trans. 11th Prague Conference on Random Processes, Information Theory and Statistical Decision Functions. Academic Publishing House, Prague 1992.

[13] Hellmund, G., Prokešová, M., Jensen, E. B. Vedel: Lévy-based Cox point processes. Adv. in Appl. Probab. 40 (2008), 603-629. | DOI | MR

[14] Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley and Sons, Chichester 2008. | MR | Zbl

[15] Jensen, A. T.: Statistical Inference for Doubly Stochastic Poisson Processes. Ph.D. Thesis, Department of Applied Mathematics and Statistics, University of Copenhagen 2005.

[16] Lindsay, B. G.: Composite likelihood methods. Contemp. Math. 80 (1988), 221-239. | DOI | MR | Zbl

[17] Matérn, B.: Doubly stochastic Poisson processes in the plane. In: Statistical Ecology. Volume 1. Pennsylvania State University Press, University Park 1971.

[18] Møller, J., Syversveen, A. R., Waagepetersen, R. P.: Log-Gaussian Cox processes. Scand. J. Statist. 25 (1998), 451-482. | DOI | MR

[19] Møller, J.: Shot noise Cox processes. Adv. in Appl. Probab. (SGSA) 35 (2003), 614-640. | DOI | MR

[20] Møller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Florida 2003.

[21] Møller, J., Waagepetersen, R. P.: Modern statistics for spatial point processes. Scand. J. Statist. 34 (2007), 643-684. | MR

[22] Prokešová, M., Jensen, E. B. Vedel: Asymptotic Palm likelihood theory for stationary spatial point processes. Accepted to Ann. Inst. Statist. Math. (2012).

[23] Tanaka, U., Ogata, Y., Stoyan, D.: Parameter estimation and model selection for Neyman-Scott point processes. Biometrical J. 49 (2007), 1-15. | MR