On extremal dependence of block vectors
Kybernetika, Tome 48 (2012) no. 5, pp. 988-1006 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Due to globalization and relaxed market regulation, we have assisted to an increasing of extremal dependence in international markets. As a consequence, several measures of tail dependence have been stated in literature in recent years, based on multivariate extreme-value theory. In this paper we present a tail dependence function and an extremal coefficient of dependence between two random vectors that extend existing ones. We shall see that in weakening the usual required dependence allows to assess the amount of dependence in $d$-variate random vectors based on bidimensional techniques. Simple estimators will be stated and can be applied to the well-known stable tail dependence function. Asymptotic normality and strong consistency will be derived too. An application to financial markets will be presented at the end.
Due to globalization and relaxed market regulation, we have assisted to an increasing of extremal dependence in international markets. As a consequence, several measures of tail dependence have been stated in literature in recent years, based on multivariate extreme-value theory. In this paper we present a tail dependence function and an extremal coefficient of dependence between two random vectors that extend existing ones. We shall see that in weakening the usual required dependence allows to assess the amount of dependence in $d$-variate random vectors based on bidimensional techniques. Simple estimators will be stated and can be applied to the well-known stable tail dependence function. Asymptotic normality and strong consistency will be derived too. An application to financial markets will be presented at the end.
Classification : 60G70
Keywords: multivariate extreme value theory; tail dependence; extremal coefficients
@article{KYB_2012_48_5_a11,
     author = {Ferreira, Helena and Ferreira, Marta},
     title = {On extremal dependence of block vectors},
     journal = {Kybernetika},
     pages = {988--1006},
     year = {2012},
     volume = {48},
     number = {5},
     mrnumber = {3086865},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a11/}
}
TY  - JOUR
AU  - Ferreira, Helena
AU  - Ferreira, Marta
TI  - On extremal dependence of block vectors
JO  - Kybernetika
PY  - 2012
SP  - 988
EP  - 1006
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a11/
LA  - en
ID  - KYB_2012_48_5_a11
ER  - 
%0 Journal Article
%A Ferreira, Helena
%A Ferreira, Marta
%T On extremal dependence of block vectors
%J Kybernetika
%D 2012
%P 988-1006
%V 48
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a11/
%G en
%F KYB_2012_48_5_a11
Ferreira, Helena; Ferreira, Marta. On extremal dependence of block vectors. Kybernetika, Tome 48 (2012) no. 5, pp. 988-1006. http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a11/

[1] Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes: Theory and Application. John Wiley, Chichester 2004. | MR

[2] Coles, S., Heffernan, J., Tawn, J.: Dependence measures for extreme value analysis. Extremes 2 (1999), 339-366. | DOI

[3] Draisma, G., Drees, H., Ferreira, A., Haan, L. de: Bivariate tail estimation: dependence in asymptotic independence. Bernoulli 10 (2004), 251-280. | DOI | MR | Zbl

[4] Drees, H., Müller, P.: Fitting and validation of a bivariate model for large claims. Insurance Math. Econom. 42 (2008), 638-650. | DOI | MR | Zbl

[5] Embrechts, P., Lindskog, F., McNeil, A.: Modelling dependence with copulas and applications to risk management. In: Handbook of Heavy Tailed Distibutions in Finance (S. Rachev, ed.), Elsevier, Amsterdam 2003, pp. 329-384.

[6] Fermanian, J. D., Radulović, D., Wegkamp, M.: Weak convergence of empirical copula processes. Bernoulli 10 (2004), 5, 847-860. | DOI | MR | Zbl

[7] Frahm, G.: On the extremal dependence coefficient of multivariate distributions. Statist. Probab. Lett. 76 (2006), 1470-1481. | DOI | MR | Zbl

[8] Frahm, G., Junker, M., Schmidt, R.: Estimating the tail-dependence coefficient: properties and pitfalls. Insurance Math. Econom. 37 (2005), 1, 80-100. | DOI | MR | Zbl

[9] Gilat, D., Hill, T.: One-sided refinements of the strong law of large numbers and the Glivenko-Cantelli theorem. Ann. Probab. 20 (1992), 1213-1221. | DOI | MR | Zbl

[10] Hua, L., Joe, H.: Tail order and intermediate tail dependence of multivariate copulas. J. Multivariate Anal. 102 (2011), 10, 1454-1471. | DOI | MR | Zbl

[11] Huang, X.: Statistics of Bivariate Extreme Values. Ph.D. Thesis, Tinbergen Institute Research Series 22, Erasmus University Rotterdam 1992.

[12] Joe, H.: Multivariate Models and Dependence Concepts. Chapman and Hall, London 1997. | MR | Zbl

[13] Krajina, A.: An M-Estimator of Multivariate Tail Dependence. Tilburg University Press 2010.

[14] Ledford, A., Tawn, J.: Statistics for near independence in multivariate extreme values. Biometrika 83 (1996), 169-187. | DOI | MR | Zbl

[15] Ledford, A., Tawn, J.: Modelling Dependence within joint tail regions. J. R. Statist. Soc. Ser. B Stat. Methodol. 59 (1997), 475-499. | DOI | MR | Zbl

[16] Li, H.: Tail Dependence of Multivariate Pareto Distributions. WSU Mathematics Technical Report 2006-6, Washington 2006.

[17] Li, H.: Tail dependence comparison of survival Marshall-Olkin copulas. Methodol. Comput. Appl. Probab. 10 (2008), 1, 39-54. | DOI | MR | Zbl

[18] Li, H.: Orthant tail dependence of multivariate extreme value distributions. J. Multivariate Anal. 100 (2009), 1, 243-256. | DOI | MR | Zbl

[19] Li, H., Sun, Y.: Tail dependence for heavy-tailed scale mixtures of multivariate distributions. J. Appl. Probab. 46 (2009), 4, 925-937. | DOI | MR | Zbl

[20] Marshall, A. W., Olkin, I.: A multivariate exponential distribution. J. Amer. Statist. Assoc. 62 (1967), 30-44. | DOI | MR | Zbl

[21] Nelsen, R. B.: Nonparametric measures of multivariate association. In: Distribution with fixed marginals and related topics, IMS Lecture Notes - Monograph Series, Vol. 28 (L. Rüschendorf et al., eds.) Hayward, Institute of Mathematical Statistics 1996, pp. 223-232. | MR

[22] Nelsen, R. B.: An Introduction to Copulas. Second edition. Springer, New York 2006. | MR

[23] Neuhaus, G.: On the weak convergence of stochastic processes with multidimensional time parameter. Ann. Math. Statist. 42 (1971), 1285-1295. | DOI | MR

[24] Schmid, F., Schmidt, R.: Multivariate conditional versions of Spearman's rho and related measures of tail dependence. J. Multivariate Anal. 98 (2007), 1123-1140. | DOI | MR | Zbl

[25] Schmidt, R., Stadtmüller, U.: Nonparametric estimation of tail dependence. Scand. J. Statist. 33 (2006), 307-335. | DOI | MR | Zbl

[26] Smith, R. L.: Max-stable processes and spatial extremes. Preprint, Univ. North Carolina, USA 1990.

[27] Smith, R. L., Weissman, I.: Characterization and estimation of the multivariate extremal index. Manuscript, UNC 1996.

[28] Sibuya, M.: Bivariate extreme statistics. Ann. Inst. Statist. Math. 11 (1960), 195-210. | DOI | MR | Zbl

[29] Oliveira, J. Tiago de: Structure theory of bivariate extremes: extensions. Est. Mat. Estat. e Econ. 7 (1962/63), 165-195.

[30] Wolff, E. F.: N-dimensional measures of dependence. Stochastica 4 (1980), 3, 175-188. | MR | Zbl