Constructing families of symmetric dependence functions
Kybernetika, Tome 48 (2012) no. 5, pp. 977-987 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We construct two pairs $(\mathscr{A}^{[1]}_{F}, \mathscr{A}^{[2]}_{F})$ and $(\mathscr{A}^{[1]}_{\psi}, \mathscr{A}^{[2]}_{\psi})$ of ordered parametric families of symmetric dependence functions. The families of the first pair are indexed by regular distribution functions $F$, and those of the second pair by elements $\psi$ of a specific function family $\mathbb\psi$. We also show that all solutions of the differential equation $\frac{{\mathrm d}y}{{\mathrm d}u}=\frac{\alpha(u)}{u(1-u)}y$ for $\alpha$ in a certain function family ${\mathbb\alpha}_{\rm s}$ are symmetric dependence functions.
We construct two pairs $(\mathscr{A}^{[1]}_{F}, \mathscr{A}^{[2]}_{F})$ and $(\mathscr{A}^{[1]}_{\psi}, \mathscr{A}^{[2]}_{\psi})$ of ordered parametric families of symmetric dependence functions. The families of the first pair are indexed by regular distribution functions $F$, and those of the second pair by elements $\psi$ of a specific function family $\mathbb\psi$. We also show that all solutions of the differential equation $\frac{{\mathrm d}y}{{\mathrm d}u}=\frac{\alpha(u)}{u(1-u)}y$ for $\alpha$ in a certain function family ${\mathbb\alpha}_{\rm s}$ are symmetric dependence functions.
Classification : 62H20
Keywords: archimax copula; copula; dependence function; generator of a dependence function
@article{KYB_2012_48_5_a10,
     author = {Wysocki, W{\l}odzimierz},
     title = {Constructing families of symmetric dependence functions},
     journal = {Kybernetika},
     pages = {977--987},
     year = {2012},
     volume = {48},
     number = {5},
     mrnumber = {3086864},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a10/}
}
TY  - JOUR
AU  - Wysocki, Włodzimierz
TI  - Constructing families of symmetric dependence functions
JO  - Kybernetika
PY  - 2012
SP  - 977
EP  - 987
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a10/
LA  - en
ID  - KYB_2012_48_5_a10
ER  - 
%0 Journal Article
%A Wysocki, Włodzimierz
%T Constructing families of symmetric dependence functions
%J Kybernetika
%D 2012
%P 977-987
%V 48
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a10/
%G en
%F KYB_2012_48_5_a10
Wysocki, Włodzimierz. Constructing families of symmetric dependence functions. Kybernetika, Tome 48 (2012) no. 5, pp. 977-987. http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a10/

[1] Capéraà, P., Fougères, A. L., Genest, C.: Bivariate distributions with given extreme value attractor. J. Multivariate Anal. 72 (2000), 30-49. | DOI | MR | Zbl

[2] Genest, C., MacKay, J.: Copules archimédiennes et familles des lois bidimensionnelles dont les marges sont données. Canad. J. Statist. 14 (1986), 145-159. | DOI | MR

[3] Gudendorf, G., Segers, J.: Extreme-value copulas. In: Copula Theory and Its Applications, Warsaw 2009, Lecture Notes in Statist. Proc. 198, Springer 2010, pp. 127-146.

[4] Gumbel, E. J.: Bivariate exponential distributions. J. Amer. Statist. Assoc. 55 (1960), 698-707. | DOI | MR | Zbl

[5] Hürlimann, W.: Properties and measures of dependence for the archimax copula. Adv. Appl. Statist. 5 (2005), 125-143. | MR

[6] Hutchinson, T. P., Lai, C. D.: Continuous Bivariate Distributions. Emphasising Applications. Rumsby Sci. Publ., Adelaide 1990. | MR | Zbl

[7] Joe, H.: Multivariate Models and Dependence Concepts. Chapman and Hall, London 1997. | MR | Zbl

[8] Nelsen, R. B.: An Introduction to Copulas. Springer, New York 1999. | MR | Zbl

[9] Pickands, J.: Multivariate extreme value distributions. Bull. Int. Statist. Inst. 49 (1981), 859-879. | MR | Zbl

[10] Wysocki, W.: When a copula is archimax. Statist. Probab. Lett. (2012), to appear.