On solution sets of information inequalities
Kybernetika, Tome 48 (2012) no. 5, pp. 845-864 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate solution sets of a special kind of linear inequality systems. In particular, we derive characterizations of these sets in terms of minimal solution sets. The studied inequalities emerge as information inequalities in the context of Bayesian networks. This allows to deduce structural properties of Bayesian networks, which is important within causal inference.
We investigate solution sets of a special kind of linear inequality systems. In particular, we derive characterizations of these sets in terms of minimal solution sets. The studied inequalities emerge as information inequalities in the context of Bayesian networks. This allows to deduce structural properties of Bayesian networks, which is important within causal inference.
Classification : 15A39, 52Bxx, 94A17
Keywords: linear inequalities; polyhedral sets; Bayesian networks; information; entropy
@article{KYB_2012_48_5_a1,
     author = {Ay, Nihat and Wenzel, Walter},
     title = {On solution sets of information inequalities},
     journal = {Kybernetika},
     pages = {845--864},
     year = {2012},
     volume = {48},
     number = {5},
     mrnumber = {3086855},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a1/}
}
TY  - JOUR
AU  - Ay, Nihat
AU  - Wenzel, Walter
TI  - On solution sets of information inequalities
JO  - Kybernetika
PY  - 2012
SP  - 845
EP  - 864
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a1/
LA  - en
ID  - KYB_2012_48_5_a1
ER  - 
%0 Journal Article
%A Ay, Nihat
%A Wenzel, Walter
%T On solution sets of information inequalities
%J Kybernetika
%D 2012
%P 845-864
%V 48
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a1/
%G en
%F KYB_2012_48_5_a1
Ay, Nihat; Wenzel, Walter. On solution sets of information inequalities. Kybernetika, Tome 48 (2012) no. 5, pp. 845-864. http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a1/

[1] Ay, N.: A refinement of the common cause principle. Discrete Appl. Math. 157 (2009), 2439-2457. | DOI | MR

[2] Ay, N., Polani, D.: Information flows in causal networks. Adv. Complex Systems 11 (2008), 1, 17-41. | DOI | MR | Zbl

[3] Martini, H., Soltan, V.: Combinatorial problems on the illumination of convex bodies. Aequationes Math. 57 (1999), 121-152. | DOI | MR | Zbl

[4] Martini, H., Wenzel, W.: Illumination and visibility problems in terms of closure operators. Beiträge zur Algebra und Geometrie 45 (2004), 2, 607-614. | MR | Zbl

[5] Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press 2000. | MR | Zbl

[6] Steudel, B., Ay, N.: Information-theoretic inference of common ancestors. Submitted. ArXiv preprint (2010) arXiv:1010.5720.

[7] Valentine, F. A.: Visible shorelines. Amer. Math. Monthly 77 (1970), 146-152. | DOI | MR | Zbl

[8] Webster, R.: Convexity. Oxford University Press 1994. | MR | Zbl

[9] Ziegler, G.: Lectures on Polytopes. Springer Verlag Berlin 1997. | MR | Zbl