Keywords: linear inequalities; polyhedral sets; Bayesian networks; information; entropy
@article{KYB_2012_48_5_a1,
author = {Ay, Nihat and Wenzel, Walter},
title = {On solution sets of information inequalities},
journal = {Kybernetika},
pages = {845--864},
year = {2012},
volume = {48},
number = {5},
mrnumber = {3086855},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a1/}
}
Ay, Nihat; Wenzel, Walter. On solution sets of information inequalities. Kybernetika, Tome 48 (2012) no. 5, pp. 845-864. http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a1/
[1] Ay, N.: A refinement of the common cause principle. Discrete Appl. Math. 157 (2009), 2439-2457. | DOI | MR
[2] Ay, N., Polani, D.: Information flows in causal networks. Adv. Complex Systems 11 (2008), 1, 17-41. | DOI | MR | Zbl
[3] Martini, H., Soltan, V.: Combinatorial problems on the illumination of convex bodies. Aequationes Math. 57 (1999), 121-152. | DOI | MR | Zbl
[4] Martini, H., Wenzel, W.: Illumination and visibility problems in terms of closure operators. Beiträge zur Algebra und Geometrie 45 (2004), 2, 607-614. | MR | Zbl
[5] Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press 2000. | MR | Zbl
[6] Steudel, B., Ay, N.: Information-theoretic inference of common ancestors. Submitted. ArXiv preprint (2010) arXiv:1010.5720.
[7] Valentine, F. A.: Visible shorelines. Amer. Math. Monthly 77 (1970), 146-152. | DOI | MR | Zbl
[8] Webster, R.: Convexity. Oxford University Press 1994. | MR | Zbl
[9] Ziegler, G.: Lectures on Polytopes. Springer Verlag Berlin 1997. | MR | Zbl