Keywords: backward selection; information divergence; decomposable model; acyclic hypergraph; $k$-hypertree
@article{KYB_2012_48_5_a0,
author = {Malvestuto, Francesco M.},
title = {A backward selection procedure for approximating a discrete probability distribution by decomposable models},
journal = {Kybernetika},
pages = {825--844},
year = {2012},
volume = {48},
number = {5},
mrnumber = {3086854},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a0/}
}
TY - JOUR AU - Malvestuto, Francesco M. TI - A backward selection procedure for approximating a discrete probability distribution by decomposable models JO - Kybernetika PY - 2012 SP - 825 EP - 844 VL - 48 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a0/ LA - en ID - KYB_2012_48_5_a0 ER -
Malvestuto, Francesco M. A backward selection procedure for approximating a discrete probability distribution by decomposable models. Kybernetika, Tome 48 (2012) no. 5, pp. 825-844. http://geodesic.mathdoc.fr/item/KYB_2012_48_5_a0/
[1] Almond, R., Kong, A.: Optimality Issues in Constructing a Markov Tree from Graphical Models. Research Report A-3, Dept. Statistics, Harvard University, 1991.
[2] Altmüller, A., Haralick, R. M.: Approximating high dimensional probability disributions. In: Proc. XVII Int. Conf. on Patter Recognitions, 2004.
[3] Altmüller, A., Haralick, R. M.: Practical aspects of efficient forward selection in decomposable graphical models. In: Proc. XVI IEEE Int. Conf. on Tools with Artificial Intelligence, 2004, pp. 710-715.
[4] Bach, F. R., Jordan, M. I.: Thin junction trees. Adv. in Neural Inform. Proces. Systems 14 (2002), 569-572.
[5] Badsberg, J.-H., Malvestuto, F. M.: An implementation of the iterative proportional fitting procedure by propagation trees. Comput. Statist. Data Anal. 37 (2001), 297-322. | DOI | MR | Zbl
[6] Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. J. ACM 30 (1983), 479-513. | DOI | MR | Zbl
[7] Beineke, L. W., Pippert, R. E.: The enumeration of labelled 2-trees. J. Combin. Theory 6 (1969), 200-205. | MR
[8] Bishop, Y., Fienberg, S. E., Holland, P. W.: Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge 1975. | MR | Zbl
[9] Brown, D. T.: A note on approximations to discrete probability distributions. Inform. and Control 2 (1959), 386-392. | DOI | MR | Zbl
[10] Chickering, D.: Learning Bayesian networks is NP-complete. In: Learning from Data, Lecture Notes in Statist. 112 (1996), 121-130. | MR
[11] Chow, C. K., Liu, C. N.: Approximating discrete probability distributions with dependence trees. IEEE Trans. Inform. Theory 14 (1968), 462-467. | DOI | Zbl
[12] Cover, T. M.: Elements of Information Theory. John Wiley and Sons, 1991. | MR | Zbl
[13] Csiszár, I., Körner, J.: Information Theory. Academic Press, 1981. | MR
[14] Dagum, P., Luby, M.: Approximating probabilistic inference in belief networks is NP-hard. Artificial Intelligence 60 (1993), 141-153. | DOI | MR
[15] Dasgupta, S.: Learning polytrees. In: Proc. XV Conference on Uncertainty in Artificial Intelligence, 1999, pp. 134-141.
[16] Deshpande, A., Garofalakis, M., Jordan, M. I.: Efficient stepwise selection in decomposable models. In: Proc. XVII Conf. on Uncertainty in Artificial Intelligence, 2001, pp. 128-135.
[17] Ding, G., Lax, R. F., Chen, J., Chen, P. P., Marx, B. D.: Comparison of greedy strategies for learning Markov networks of treewidth $k$. In: Proc. Int. Conf. on Machine Learning: Models, Technologies and Applications, 2007, pp. 294-301.
[18] Havránek, T.: On model search methods. In: Proc. IX Symp. on Computational Statistics, 1990, pp. 101-108.
[19] Havránek, T.: Simple formal systems in data analysis. In: Proc. Conf. on Symbolic-Numeric Data Analysis and Learning, 1991, pp. 373-381.
[20] Jensen, F. V., Jensen, F.: Optimal junction trees. In: Proc. X Conf. on Uncertainty in Artificial Intelligence (R. L. de Mantaras and D. Poole, eds.), 1994, pp. 360-366.
[21] Karger, D., Srebro, N.: Learning Markov networks: maximum bounded tree-width graphs. In: Proc. XII ACM-SIAM Symp. on Discrete Mathematics, 2001, pp. 392-401. | MR | Zbl
[22] Kloks, T.: Tree-width. LNCS 842, Springer Verlag, Berlin 1994. | Zbl
[23] Kocka, T.: New algorithm for learning decomposable models. Unpublished manuscript, 2000.
[24] Kovács, E., Szántai, T.: Vine copulas as a mean for the construction of high dimensional probability distribution associated to a Markov network. arXiv:1105.1697v1, 2011.
[25] Ku, H. H., Kullback, S.: Approximating discrete probability distributions. IEEE Trans. Inform. Theory 15 (1969), 444-447. | DOI | MR | Zbl
[26] Lauritzen, S. L.: Graphical Models. Clarendon Press, Oxford 1996. | MR
[27] II, P. M. Lewis: Approximating probability distributions to reduce storage requirements. Inform. and Control 2 (1959), 214-225. | DOI | MR
[28] Malvestuto, F. M.: Operations research in the design of statistical databases (in Italian). In: Proc. AIRO Meeting on Operations Research and Computer Science, 1986, pp. 117-130.
[29] Malvestuto, F. M.: Approximating discrete probability distributions with decomposable models. IEEE Trans. Systems, Man and Cybernetics 21 (1991), 1287-1294. | DOI
[30] Malvestuto, F. M.: An axiomatization of loglinear models with an application to the model search. In: Learning from Data, LNS 112 (1996), pp. 175-184.
[31] Malvestuto, F. M.: Designing a probabilistic database from a given set of full conditional independences. In: Proc. Workshop on Conditional Independence Structures and Graphical Models, 1999.
[32] Malvestuto, F. M.: A hypergraph-theoretic analysis of collapsibility and decomposability for extended log-linear models. Statist. Comput. 11 (2001), 155-169. | DOI | MR
[33] Malvestuto, F. M.: From conditional independences to factorization constraints with discrete random variables. Ann. Math. and Artificial Intelligence 35 (2002), 253-285. | DOI | MR | Zbl
[34] Malvestuto, F. M.: Tree and local computations in a cross-entropy minimization problem with marginal constraints. Kybernetika 46 (2010), 621-654. | MR | Zbl
[35] Meek, C.: Finding a path is harder than finding a tree. J. Artificial Intelligence Res. 15 (2001), 383-389. | MR | Zbl
[36] Mezzini, M., Moscarini, M.: Simple algorithms for minimal triangulation of a graph and backward selection of a decomposable Markov network. Theoret. Comput. Sci. 411 (2010), 958-966. | DOI | MR | Zbl
[37] Nunez, K., Chen, J., Chen, P., Ding, G., Lax, R. F., Marx, B.: Empirical comparison of greedy strategies for learning Markov networks of treewidth $k$. In: Proc. VII Int. Conf. on Machine Learning and Applications, 2008, pp. 106-113.
[38] Rose, J. D.: On simple characterizations of $k$-trees. Discrete Math. 7 (1974), 317-322. | DOI | MR | Zbl
[39] Szántai, T., Kovács, E.: Hypergraphs as a mean of discovering the dependence structure of a discrete multivariate probability distribution. In: Proc. Conf. on Applied Mathematical Programming and Modelling, 2008; also in Ann. Oper. Res. 193 (2012), 71-90. | MR
[40] Szántai, T., Kovács, E.: Discovering a junction tree behind a Markov network by a greedy algorithm. arXiv:1104.2762v3, 2011.
[41] Tarjan, R. E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce hypergraphs. SIAM J. Comput. 13 (1984), 566-579. | DOI | MR
[42] Wermuth, N.: Analogies between multiplicative models in contingency tables and covariance selection. Biometrics 32 (1976), 95-108. | DOI | MR | Zbl
[43] Wermuth, N.: Model search among multiplicative models. Biometrics 32 (1976), 253-256. | DOI | Zbl
[44] Xiang, Y., Wong, S. K. M., Cercone, N.: A ``microscopic'' study of minimum entropy search in learning decomposable Markov networks. Mach. Learning 26 (1997), 65-72. | DOI | Zbl