Keywords: minimum $\phi $-divergence estimation; subdivergence; superdivergence; PC simulation; relative efficiency; robustness
@article{KYB_2012_48_4_a8,
author = {Fr\'ydlov\'a, Iva and Vajda, Igor and K\r{u}s, V\'aclav},
title = {Modified power divergence estimators in normal models {\textendash} simulation and comparative study},
journal = {Kybernetika},
pages = {795--808},
year = {2012},
volume = {48},
number = {4},
mrnumber = {3013399},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_4_a8/}
}
TY - JOUR AU - Frýdlová, Iva AU - Vajda, Igor AU - Kůs, Václav TI - Modified power divergence estimators in normal models – simulation and comparative study JO - Kybernetika PY - 2012 SP - 795 EP - 808 VL - 48 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2012_48_4_a8/ LA - en ID - KYB_2012_48_4_a8 ER -
Frýdlová, Iva; Vajda, Igor; Kůs, Václav. Modified power divergence estimators in normal models – simulation and comparative study. Kybernetika, Tome 48 (2012) no. 4, pp. 795-808. http://geodesic.mathdoc.fr/item/KYB_2012_48_4_a8/
[1] M. Broniatowski, A. Keziou: Minimization of $\phi $-divergences on sets of signed measures. Studia Sci. Math. Hungar. 43 (2006), 403-442. | MR | Zbl
[2] M. Broniatowski, A. Keziou: Parametric estimation and tests through divergences and the duality technique. J. Multivariate Anal. 100 (2009), 16-36. | DOI | MR | Zbl
[3] M. Broniatowski, I. Vajda: Several Applications of Divergence Criteria in Continuous Families. Research Report No. 2257. Institute of Information Theory and Automation, Prague 2009.
[4] I. Frýdlová: Minimum Kolmogorov Distance Estimators. Diploma Thesis. Czech Technical University, Prague 2004.
[5] I. Frýdlová: Modified Power Divergence Estimators and Their Performances in Normal Models. In: Proc. FernStat2010, Faculty of Social and Economic Studies UJEP, Ústí n. L. 2010, 28-33.
[6] F. Liese, I. Vajda: On divergences and informations in statistics and information theory. IEEE Trans. Inform. Theory 52 (2006), 4394-4412. | DOI | MR
[7] A. Toma, S. Leoni-Aubin: Robust tests based on dual divergence estimators and saddlepoint approximations. J. Multivariate Anal. 101 (2010), 1143-1155. | DOI | MR | Zbl
[8] A. Toma, M. Broniatowski: Dual divergence estimators and tests: Robustness results. J. Multivariate Analysis 102 (2011), 20-36. | DOI | MR | Zbl
[9] I. Vajda: Theory of Statistical Inference and Information. Kluwer, Boston 1989. | Zbl