Keywords: generalized linear models; binary responses; statistical smoothing; statistical enhancing; maximum likelihood estimator; median estimator; consistency; asymptotic normality; efficiency; robustness
@article{KYB_2012_48_4_a7,
author = {Hobza, Tom\'a\v{s} and Pardo, Leandro and Vajda, Igor},
title = {Robust median estimator for generalized linear models with binary responses},
journal = {Kybernetika},
pages = {768--794},
year = {2012},
volume = {48},
number = {4},
mrnumber = {3013398},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_4_a7/}
}
Hobza, Tomáš; Pardo, Leandro; Vajda, Igor. Robust median estimator for generalized linear models with binary responses. Kybernetika, Tome 48 (2012) no. 4, pp. 768-794. http://geodesic.mathdoc.fr/item/KYB_2012_48_4_a7/
[1] G. Adimari, L. Ventura: Robust inference for generalized linear models with application to logistic regression. Statist. Probab. Lett. 55 (2001), 4, 413-419. | DOI | MR | Zbl
[2] A. M. Bianco, V. J. Yohai: Robust estimation in the logistic regression model. In: Robust Statistics, Data Analysis, and Computer Intensive Methods (Schloss Thurnau, 1994), pp. 17-34. Lecture Notes in Statist. 109 Springer, New York 1996. | MR | Zbl
[3] C. Croux, G. Haesbroeck: Implementing the Bianco and Yohai estimator for logistic regression. Computat. Statist. Data Anal. 44 (2003), 273-295. | DOI | MR
[4] J. E. Dennis, Jr., R. B. Schnabel: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New Jersey 1983. | MR | Zbl
[5] D. Gervini: Robust adaptive estimators for binary regression models. J. Statist. Plann. Inference 131 (2005), 297-311. | DOI | MR | Zbl
[6] F. R. Hampel, P. J. Rousseeuw, E. M. Ronchetti, W. A. Stahel: Robust Statistics: The Approach Based on Influence Functions. Wiley, New York 1986. | MR | Zbl
[7] T. Hobza, L. Pardo, I. Vajda: Median Estimators in Generalized Logistic Regression. Research Report DAR-UTIA 2005/40. Institute of Information Theory, Prague 2005 (available at http://dar.site.cas.cz/?publication=1007)
[8] T. Hobza, L. Pardo, I. Vajda: Robust Median Estimators in Logistic Regression. Research Report DAR-UTIA 2006/31. Institute of Information Theory, Prague 2006 (available at http://dar.site.cas.cz/?publication=1089)
[9] T. Hobza, L. Pardo, I. Vajda: Robust median estimator in logistic regression. J. Statist. Plann. Inference 138 (2008), 3822-3840. | DOI | MR | Zbl
[10] J. Jurečková, P. K. Sen: Robust Statistical Procedures. Wiley, New York 1996. | MR | Zbl
[11] N. Kordzakhia, G. D. Mishra, L. Reiersølmoen: Robust estimation in the logistic regression model. J. Statist. Plann. Inference 98 (2001), 211-223. | DOI | MR
[12] F. Liese, I. Vajda: $M$-estimators of structural parameters in pseudolinear models. Appl. Math. 44 (1999), 245-270. | DOI | MR | Zbl
[13] F. Liese, I. Vajda: A general asymptotic theory of $M$-estimators I. Math. Methods Statist. 12 (2003) 454-477. | MR
[14] F. Liese, I. Vajda: A general asymptotic theory of $M$-estimators II. Math. Methods Statist. 13 (2004) 82-95. | MR | Zbl
[15] P. McCullagh, J. A. Nelder: Generalized Linear Models. Chapman and Hall, London 1989. | MR | Zbl
[16] M. L. Menéndez, L. Pardo, M. C. Pardo: Preliminary test estimators and phi-divergence measures in generalized linear models with binary data. J. Multivariate Anal. 99 (2009), 10, 2265-2284. | DOI | MR | Zbl
[17] J. Moré, G. Burton, H. Kenneth: User Guide for MINPACK-1. Argonne National Laboratory Report ANL-80-74, Argonne 1980.
[18] S. Morgenthaler: Least-absolute-deviations fits for generalized linear models. Biometrika 79 (1992), 747-754. | DOI | Zbl
[19] J. Nagler: Scobit: An alternative estimator to logit and Probit. Amer. J. Political Sci. 38 (1994), 1, 230-255. | DOI
[20] D. Pregibon: Resistant lits for some commonly used logistic models with medical applications. Biometrics 38 (1982), 485-498. | DOI
[21] R. L. Prentice: A generalization of the probit and logit methods for dose-response curves. Biometrika 32 (1976), 761-768.
[22] P. J. Rousseeuw, A. Christmann: Robustness against separation and outliers in logistic regression. Comput. Statist. Data Anal. 43 (2003), 315-332. | DOI | MR