Limits of Bayesian decision related quantities of binomial asset price models
Kybernetika, Tome 48 (2012) no. 4, pp. 750-767 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study Bayesian decision making based on observations $\left(X_{n,t} : t\in\{0,\frac{T}{n},2\frac{T}{n},\ldots,n\frac{T}{n}\}\right)$ ($T>0, n\in \mathbb{N}$) of the discrete-time price dynamics of a financial asset, when the hypothesis a special $n$-period binomial model and the alternative is a different $n$-period binomial model. As the observation gaps tend to zero (i. e. $n \rightarrow \infty$), we obtain the limits of the corresponding Bayes risk as well as of the related Hellinger integrals and power divergences. Furthermore, we also give an example for the “non-commutativity” between Bayesian statistical and optimal investment decisions.
We study Bayesian decision making based on observations $\left(X_{n,t} : t\in\{0,\frac{T}{n},2\frac{T}{n},\ldots,n\frac{T}{n}\}\right)$ ($T>0, n\in \mathbb{N}$) of the discrete-time price dynamics of a financial asset, when the hypothesis a special $n$-period binomial model and the alternative is a different $n$-period binomial model. As the observation gaps tend to zero (i. e. $n \rightarrow \infty$), we obtain the limits of the corresponding Bayes risk as well as of the related Hellinger integrals and power divergences. Furthermore, we also give an example for the “non-commutativity” between Bayesian statistical and optimal investment decisions.
Classification : 62C10, 91B25, 94A17
Keywords: Bayesian decisions; power divergences; Cox--Ross--Rubinstein binomial asset price models
@article{KYB_2012_48_4_a6,
     author = {Stummer, Wolfgang and Lao, Wei},
     title = {Limits of {Bayesian} decision related quantities of binomial asset price models},
     journal = {Kybernetika},
     pages = {750--767},
     year = {2012},
     volume = {48},
     number = {4},
     mrnumber = {3013397},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_4_a6/}
}
TY  - JOUR
AU  - Stummer, Wolfgang
AU  - Lao, Wei
TI  - Limits of Bayesian decision related quantities of binomial asset price models
JO  - Kybernetika
PY  - 2012
SP  - 750
EP  - 767
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_4_a6/
LA  - en
ID  - KYB_2012_48_4_a6
ER  - 
%0 Journal Article
%A Stummer, Wolfgang
%A Lao, Wei
%T Limits of Bayesian decision related quantities of binomial asset price models
%J Kybernetika
%D 2012
%P 750-767
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_4_a6/
%G en
%F KYB_2012_48_4_a6
Stummer, Wolfgang; Lao, Wei. Limits of Bayesian decision related quantities of binomial asset price models. Kybernetika, Tome 48 (2012) no. 4, pp. 750-767. http://geodesic.mathdoc.fr/item/KYB_2012_48_4_a6/

[1] A. K. Bera, Y. Bilias: The MM, ME, ML, EL, EF and GMM approaches to estimation: a synthesis. J. Econometrics 107 (2002), 51-86. | DOI | MR | Zbl

[2] A. Berlinet, I. Vajda: Selection rules based on divergences. Statistics 45 (2011), 479-495. | DOI | MR | Zbl

[3] M. Broniatowski, I. Vajda: Several applications of divergence criteria in continuous families. To appear in Kybernetika (2012). See also Research Report No. 2257, Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague 2009; moreover, see arXiv:0911.0937v1 [math.ST].

[4] J. C. Cox, S. A. Ross, M. Rubinstein: Option pricing: a simplified approach. J. Finan. Econ. 7 (1979), 229-263. | DOI | Zbl

[5] N. Cressie, T. R. C. Read: Multinomial goodness-of-fit tests. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 46 (1984), 440-464. | MR | Zbl

[6] I. Csiszár, F. Matúš: Generalized maximum likelihood estimates for exponential families. Probab. Theory Related Fields 141 (2008), 213-246. | DOI | MR | Zbl

[7] I. Csiszár, P. C. Shields: Information theory and statistics: a tutorial. Found. Trends Commun. Inform. Theory 1 (2004), 4, 417-528. | DOI | Zbl

[8] I. V. Girsanov: On transforming a certain class of stochastic processes by absolutely continuous substitution of measures. Theory Probab. Appl. 5 (1960), 285-301. | MR | Zbl

[9] A. Golan: Information and entropy econometrics - editor's view. J. Econometrics 107 (2002), 1-15. | DOI | MR | Zbl

[10] A. Gretton, L. Györfi: Consistent nonparametric tests of independence. J. Mach. Learn. Res. 11 (2010), 1391-1423. | MR | Zbl

[11] P. Harremoes, I. Vajda: On the Bahadur-effcient testing of uniformity by means of the entropy. IEEE Trans. Inform. Theory 54 (2008), 321-331. | DOI | MR

[12] P. Harremoes, I. Vajda: On Bahadur efficiency of power divergence statistics. Preprint arXiv:1002.1493v1 [math.ST] (2010).

[13] T. Hobza, L. Pardo, D. Morales: Rényi statistics for testing equality of autocorrelation coefficients. Statist. Methodol. 6 (2009), 424-436. | DOI | MR

[14] F. Liese, K.-J. Miescke: Statistical Decision Theory. Springer-Verlag, New York 2008. | MR | Zbl

[15] F. Liese, D. Morales, I. Vajda: Asymptotically sufficient partitions and quantizations. IEEE Trans. Inform. Theory 52 (2006), 5599-5606. | DOI | MR

[16] F. Liese, I. Vajda: Convex Statistical Distances. Teubner, Leipzig 1987. | MR | Zbl

[17] F. Liese, I. Vajda: On divergences and informations in statistics and information theory. IEEE Trans. Inform. Theory 52 (2006), 4394-4412. | DOI | MR

[18] E. Maasoumi: A compendium to information theory in economics and econometrics. Econometrics Rev. 12 (1993), 2, 137-181. | DOI | MR | Zbl

[19] D. Morales, I. Vajda: Generalized information criteria for optimal Bayes decisions. Research Report No. 2274, Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague 2010.

[20] D. B. Nelson, K. Ramaswamy: Simple binomial processes as diffusion approximations in financial models. Rev. Financ. Stud. 3 (1990), 393-430. | DOI

[21] L. Pardo: Statistical Inference Based on Divergence Measures. Chapman \& Hall, Boca Raton 2005. | MR | Zbl

[22] M. C. Pardo: Testing equality restrictions in generalized linear models for multinomial data. Metrika 73 (2011), 231-253. | DOI | MR | Zbl

[23] T. R. C. Read, N. A. C. Cressie: Goodness-of-Fit Statistics for Discrete Multivariate Data. Springer-Verlag, New York 1988. | MR | Zbl

[24] H. Strasser: Mathematical Theory of Statistics. De Gruyter, Berlin 1985. | MR | Zbl

[25] W. Stummer: Exponentials, Diffusions, Finance, Entropy and Information. Shaker, Aachen 2004. | Zbl

[26] W. Stummer, I. Vajda: Optimal statistical decisions about some alternative financial models. J. Econometrics 137 (2007), 441-471. | DOI | MR

[27] W. Stummer, I. Vajda: On divergences of finite measures and their applicability in statistics and information theory. Statistics 44 (2010), 169-187. | DOI | MR

[28] I. Vajda, E.C. van der Meulen: Goodness-of-Fit criteria based on observations quantized by hypothetical and empirical percentiles. In: Handbook of Fitting Statistical Distributions with R (Z.A. Katrian, E.J. Dudewicz eds.), Chapman \& Hall / CRC, 2010, pp. 917-994.

[29] I. Vajda, J. Zvárová: On generalized entropies, Bayesian decisions and statistical diversity. Kybernetika 43 (2007), 675-696. | MR | Zbl