Keywords: maximum entropy; moment constraint; generalized primal/dual solutions; normal integrand; minimizing sequence; convex duality; Bregman projection; conic core; generalized exponential family; inference principles
@article{KYB_2012_48_4_a3,
author = {Csisz\'ar, Imre and Mat\'u\v{s}, Franti\v{s}ek},
title = {Generalized minimizers of convex integral functionals, {Bregman} distance, {Pythagorean} identities},
journal = {Kybernetika},
pages = {637--689},
year = {2012},
volume = {48},
number = {4},
mrnumber = {3013394},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_4_a3/}
}
TY - JOUR AU - Csiszár, Imre AU - Matúš, František TI - Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities JO - Kybernetika PY - 2012 SP - 637 EP - 689 VL - 48 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2012_48_4_a3/ LA - en ID - KYB_2012_48_4_a3 ER -
Csiszár, Imre; Matúš, František. Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities. Kybernetika, Tome 48 (2012) no. 4, pp. 637-689. http://geodesic.mathdoc.fr/item/KYB_2012_48_4_a3/
[1] S. M. Ali, S. D. Silvey: A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. Ser. B 28 (1966) 131-142. | MR | Zbl
[2] S. Amari, H. Nagaoka: Methods of Information Geometry. Transl. Math. Monographs 191, Oxford Univ. Press, 2000. | MR | Zbl
[3] S. Amari, A. Cichocki: Information geometry of divergence functions. Bull. Polish Acad. Sci. 58 (2010) 183-194.
[4] O. Barndorff-Nielsen: Information and Exponential Families in Statistical Theory. Wiley, 1978. | MR | Zbl
[5] H. H. Bauschke, J. M. Borwein: Legendre functions and the method of random Bregman projections. J. Convex Anal. 4 (1997), 27-67. | MR | Zbl
[6] H. H. Bauschke, J. M. Borwein, P. L. Combettes: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Comm. Contemp. Math. 3 (2001), 615-647. | DOI | MR | Zbl
[7] A. Ben-Tal, A. Charnes: A dual optimization framework for some problems of information theory and statistics. Problems Control Inform. Theory 8 (1979), 387-401. | MR | Zbl
[8] J. M. Borwein, A. S. Lewis: Duality relationships for entropy-like minimization problems. SIAM J. Control Optim. 29 (1991), 325-338. | DOI | MR | Zbl
[9] J. M. Borwein, A. S. Lewis: Convergence of best entropy estimates. SIAM J. Optim. 1 (1991), 191-205. | DOI | MR | Zbl
[10] J. M. Borwein, A. S. Lewis: Partially-finite programming in $L_1$ and the existence of maximum entropy estimates. SIAM J. Optim. 3 (1993), 248-267. | DOI | MR
[11] J. M. Borwein, A. S. Lewis, D. Noll: Maximum entropy spectral analysis using derivative information. Part I: Fisher information and convex duality. Math. Oper. Res. 21 (1996), 442-468. | DOI | MR
[12] L. M. Bregman: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. and Math. Phys. 7 (1967), 200-217. | DOI | MR | Zbl
[13] M. Broniatowski, A. Keziou: Minimization of $\phi$-divergences on sets of signed measures. Studia Sci. Math. Hungar. 43 (2006), 403-442. | MR | Zbl
[14] J. P. Burg: Maximum entropy spectral analysis. Paper presented at 37th Meeting of Soc. Explor. Geophysicists, Oklahoma City 1967.
[15] J. P. Burg: Maximum entropy spectral analysis. Ph.D. Thesis, Dept. Geophysics, Stanford Univ., Stanford 1975.
[16] Y. Censor, S. A. Zenios: Parallel Optimization. Oxford University Press, New York 1997. | MR | Zbl
[17] N. N. Chentsov: Statistical Decision Rules and Optimal Inference. Transl. Math. Monographs 53, American Math. Soc., Providence 1982. Russian original: Nauka, Moscow 1972. | MR | Zbl
[18] I. Csiszár: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 85-108. | MR | Zbl
[19] I. Csiszár: Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2 (1967), 299-318. | MR | Zbl
[20] I. Csiszár: $I$-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3 (1975), 146-158. | DOI | MR
[21] I. Csiszár: Sanov property, generalized $I$-projection and a conditional limit theorem. Ann. Probab. 12 (1984), 768-793. | DOI | MR | Zbl
[22] I. Csiszár: Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Statist. 19 (1991), 2031-2066. | DOI | MR | Zbl
[23] I. Csiszár: Generalized projections for non-negative functions. Acta Math. Hungar. 68 (1995), 1-2, 161-185. | DOI | MR | Zbl
[24] I. Csiszár, F. Gamboa, E. Gassiat: MEM pixel correlated solutions for generalized moment and interpolation problems. IEEE Trans. Inform. Theory 45 (1999), 2253-2270. | DOI | MR | Zbl
[25] I. Csiszár, F. Matúš: Convex cores of measures on $\mathcal{R}^d$. Studia Sci. Math. Hungar. 38 (2001), 177-190. | MR
[26] I. Csiszár, F. Matúš: Information projections revisited. IEEE Trans. Inform. Theory 49 (2003), 1474-1490. | DOI | MR | Zbl
[27] I. Csiszár, F. Matúš: Generalized maximum likelihood estimates for infinite dimensional exponential families. In: Proc. Prague Stochastics'06, Prague 2006, pp. 288-297.
[28] I. Csiszár, F. Matúš: Generalized maximum likelihood estimates for exponential families. Probab. Theory Related Fields 141 (2008), 213-246. | DOI | MR | Zbl
[29] I. Csiszár, F. Matúš: On minimization of entropy functionals under moment constraints. In: Proc. ISIT 2008, Toronto, pp. 2101-2105.
[30] I. Csiszár, F. Matúš: On minimization of multivariate entropy functionals. In: Proc. ITW 2009, Volos, Greece, pp. 96-100.
[31] I. Csiszár, F. Matúš: Minimization of entropy functionals revisited. In: Proc. ISIT 2012, Cambridge, MA, pp. 150-154.
[32] D. Dacunha-Castelle, F. Gamboa: Maximum d'entropie et problème des moments. Ann. Inst. H. Poincaré Probab. Statist. 26 (1990), 567-596. | MR | Zbl
[33] A. P. Dawid, P. D. Grünwald: Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory. Ann. Statist. 32 (2004), 1367-1433. | DOI | MR | Zbl
[34] S. Eguchi: Information geometry and statistical pattern recognition. Sugaku Expositions, Amer. Math. Soc. 19 (2006), 197-216. | MR
[35] B. A. Frigyik, S. Srivastava, M. R. Gupta: Functional Bregman divergence and Bayesian estimation of distributions. IEEE Trans. Inform. Theory 54 (2008), 5130-5139. | DOI | MR
[36] F. Gamboa, E. Gassiat: Bayesian methods and maximum entropy for ill-posed inverse problems. Ann. Statist. 25 (1997), 1, 328-350. | DOI | MR | Zbl
[37] E. T. Jaynes: Information theory and statistical mechanics. Physical Review Ser. II 106 (1957), 620-630. | MR | Zbl
[38] L. Jones, C. Byrne: General entropy criteria for inverse problems with application to data compression, pattern classification and cluster analysis. IEEE Trans. Inform. Theory 36 (1990), 23-30. | DOI | MR
[39] S. Kullback: Information Theory and Statistics. John Wiley and Sons, New York 1959. | MR | Zbl
[40] S. Kullback, R. A. Leibler: On information and sufficiency. Ann. Math. Statist. 22 (1951), 79-86. | DOI | MR | Zbl
[41] C. Léonard: Minimizers of energy functionals. Acta Math. Hungar. 93 (2001), 281-325. | DOI | MR | Zbl
[42] C. Léonard: Minimizers of energy functionals under not very integrable constraints. J. Convex Anal. 10 (2003), 63-68. | MR
[43] C. Léonard: Minimization of entropy functionals. J. Math. Anal. Appl. 346 (2008), 183-204. | DOI | MR | Zbl
[44] C. Léonard: Entropic projections and dominating points. ESAIM: Probability and Statistics 14 (2010), 343-381. | DOI | MR | Zbl
[45] F. Liese, I. Vajda: Convex Statistical Distances. Teubner Texte zur Mathematik 95, Teubner Verlag, Leipzig 1986. | MR | Zbl
[46] N. Murata, T. Takenouchi, T. Kanamori, S. Eguchi: Information geometry of U-Boost and Bregman divergence. Neural Computation 16 (2004), 1437-1481. | DOI | Zbl
[47] R. T. Rockafellar: Integrals which are convex functionals. Pacific J. Math. 24 (1968), 525-539. | DOI | MR | Zbl
[48] R. T. Rockafellar: Convex integral functionals and duality. In: Contributions to Nonlinear Functional Analysis (E. H. Zarantonello, ed.), Academic Press, New York 1971, pp. 215-236. | MR | Zbl
[49] R. T. Rockafellar: Convex Analysis. Princeton University Press, Princeton 1970. | MR | Zbl
[50] R. T. Rockafellar, R. J.-B. Wets: Variational Analysis. Springer Verlag, Berlin - Heidel\-berg - New York 2004. | MR | Zbl
[51] M. Teboulle, I. Vajda: Convergence of best $\phi$-entropy estimates. IEEE Trans. Inform. Theory 39 (1993), 297-301. | DOI | MR | Zbl
[52] F. Topsoe: Information-theoretical optimization techniques. Kybernetika 15 (1979), 8-27. | MR
[53] I. Vajda: Theory of Statistical Inference and Information. Kluwer Academic Puplishers, Dordrecht 1989. | Zbl