Several applications of divergence criteria in continuous families
Kybernetika, Tome 48 (2012) no. 4, pp. 600-636 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper deals with four types of point estimators based on minimization of information-theoretic divergences between hypothetical and empirical distributions. These were introduced (i) by Liese and Vajda [9] and independently Broniatowski and Keziou [3], called here power superdivergence estimators, (ii) by Broniatowski and Keziou [4], called here power subdivergence estimators, (iii) by Basu et al. [2], called here power pseudodistance estimators, and (iv) by Vajda [18] called here Rényi pseudodistance estimators. These various criterions have in common to eliminate all need for grouping or smoothing in statistical inference. The paper studies and compares general properties of these estimators such as Fisher consistency and influence curves, and illustrates these properties by detailed analysis of the applications to the estimation of normal location and scale.
This paper deals with four types of point estimators based on minimization of information-theoretic divergences between hypothetical and empirical distributions. These were introduced (i) by Liese and Vajda [9] and independently Broniatowski and Keziou [3], called here power superdivergence estimators, (ii) by Broniatowski and Keziou [4], called here power subdivergence estimators, (iii) by Basu et al. [2], called here power pseudodistance estimators, and (iv) by Vajda [18] called here Rényi pseudodistance estimators. These various criterions have in common to eliminate all need for grouping or smoothing in statistical inference. The paper studies and compares general properties of these estimators such as Fisher consistency and influence curves, and illustrates these properties by detailed analysis of the applications to the estimation of normal location and scale.
Classification : 62B10, 62F10, 62F35
Keywords: divergence; parametric estimation; robustness
@article{KYB_2012_48_4_a2,
     author = {Broniatowski, Michel},
     title = {Several applications of divergence criteria in continuous families},
     journal = {Kybernetika},
     pages = {600--636},
     year = {2012},
     volume = {48},
     number = {4},
     mrnumber = {3013393},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012_48_4_a2/}
}
TY  - JOUR
AU  - Broniatowski, Michel
TI  - Several applications of divergence criteria in continuous families
JO  - Kybernetika
PY  - 2012
SP  - 600
EP  - 636
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2012_48_4_a2/
LA  - en
ID  - KYB_2012_48_4_a2
ER  - 
%0 Journal Article
%A Broniatowski, Michel
%T Several applications of divergence criteria in continuous families
%J Kybernetika
%D 2012
%P 600-636
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2012_48_4_a2/
%G en
%F KYB_2012_48_4_a2
Broniatowski, Michel. Several applications of divergence criteria in continuous families. Kybernetika, Tome 48 (2012) no. 4, pp. 600-636. http://geodesic.mathdoc.fr/item/KYB_2012_48_4_a2/

[1] D. F. Andrews, P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, J. W. Tukey: Robust Estimates of Location. Princeton University Press, Princeton N. J. 1972. | MR | Zbl

[2] A. Basu, I. R. Harris, N. L. Hjort, M. C. Jones: Robust and efficient estimation by minimizing a density power divergence. Biometrika 85 (1998), 3, 549-559. | DOI | MR

[3] M. Broniatowski, A. Keziou: Minimization of $\phi$-divergences on sets of signed measures. Studia Sci. Math. Hungar. 43 (2006), 403-442. | MR | Zbl

[4] M. Broniatowski, A. Keziou: Parametric estimation and tests through divergences and the duality technique. J. Multivariate Anal. 100 (2009), 1, 16-31. | DOI | MR | Zbl

[5] M. Broniatowski, A. Toma, I. Vajda: Decomposable pseudodistances and applications in statistical estimation. J. Statist. Plann. Inference. 142 (2012), 9, 2574-2585 | DOI | MR

[6] M. Broniatowski, I. Vajda: Several applications of divergence criteria in continuous families. arXiv:0911.0937v1, 2009.

[7] F. R. Hampel, E. M. Ronchetti, P. J. Rousseuw, W. A. Stahel: Robust Statistics: The approach Based on Influence Functions. Willey, New York 1986. | MR

[8] F. Liese, I. Vajda: Convex Statistical Distances. Teubner, Leipzig 1987. | MR | Zbl

[9] F. Liese, I. Vajda: On divergences and informations in statistics and information theory. IEEE Trans. Inform. Theory 52 (2006), 10, 4394-4412. | DOI | MR

[10] C. Miescke, F. Liese: Statistical Decision Theory. Springer, Berlin 2008. | MR | Zbl

[11] M. R. C. Read, N. A. C. Cressie: Goodness-of-Fit Statistics for Discrete Multivariate Data. Springer, Berlin 1988. | MR | Zbl

[12] A. Rényi: On measures of entropy and information. In: Proc. 4th Berkeley Symp. on Probability and Statistics, Vol. 1, University of California Press, Berkeley 1961, pp. 547-561. | MR | Zbl

[13] A. Toma, M. Broniatowski: Minimum divergence estimators and tests: Robustness results. J. Multivariate Anal. 102 (2011), 1, 20-36. | DOI | MR

[14] I. Vajda: Minimum divergence principle in statistical estimation. Statist. Decisions (1984), Suppl. Issue No. 1, 239-261. | MR | Zbl

[15] I. Vajda: Efficiency and robustness control via distorted maximum likelihood estimation. Kybernetika 22 (1986), 47-67. | MR | Zbl

[16] I. Vajda: Comparison of asymptotic variances for several estimators of location. Probl. Control Inform. Theory 18 (1989), 2, 79-89. | MR | Zbl

[17] I. Vajda: Estimators asymptotically minimax in wide sense. Biometr. J. 31 (1989), 7, 803-810. | DOI | MR

[18] I. Vajda: Modifications od Divergence Criteria for Applications in Continuous Families. Research Report No. 2230, Institute of Information Theory and Automation, Prague 2008.

[19] A. W. van der Vaart: Asymptotic Statistics. Cambridge University Press, Cambridge 1998. | MR | Zbl

[20] A. W. van der Vaart, J. A. Wellner: Weak Convergence and Empirical Processes. Springer, Berlin 1996. | MR | Zbl